

Make: Basic
Arduino
Projects

26 Experiments with Microcontrollers
and Electronics

Don Wilcher

Make: Basic Arduino Projects
by Don Wilcher

Copyright © 2014 Don Wilcher. All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Maker Media books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://my.safaribooksonline.com). For more
information, contact O’Reilly Media’s corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Patrick Di Justo
Production Editor: Kara Ebrahim
Copyeditor: Charles Roumeliotis
Proofreader: Jasmine Kwityn
Indexer: Ellen Troutman
Cover Designer: Juliann Brown
Interior Designer: David Futato
Illustrator: Rebecca Demarest
Photographers: Frank Teng and Don Wilcher

February 2014: First Edition

Revision History for the First Edition:

2014-02-05: First release

2014-03-07: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449360665 for release details.

The Make logo and Maker Media logo are registered trademarks of Maker Media, Inc. Make:
Basic Arduino Projects and related trade dress are trademarks of Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Maker Media,
Inc., was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

ISBN: 978-1-449-36066-5

[LSI]

Preface. ix

1. The Trick Switch. 1
Parts List. 1
Let’s Build a Trick Switch. 2
Trick Switch with On/Off Indicators. 4
Something to Think About. 6

2. Sunrise-Sunset Light Switch. 9
Parts List. 9
Let’s Build a Sunrise-Sunset Light Switch. 10
Circuit Theory. 12
Sunrise-Sunset Detector with Serial Monitor. 14
Something to Think About. 16

3. Tilt Sensing Servo Motor Controller. 19
Parts List. 19
Let’s Build a Tilt Sensing Servo Motor Controller. 20
Upload the Tilt Sensor Sketch. 23
A Simple Animatronic Controller Using the Serial Monitor. 24
Circuit Theory. 27
Something to Think About. 28

4. Twin LEDs. 29
Parts List. 29
Circuit Theory. 31

iii

Contents

Twin LED Flasher. 31
Build the Adjustable Twin LED Flasher. 35
It’s Alive! Build a FrankenBot Toy. 38
Something to Think About. 41

5. The Opposite Switch. 43
Parts List. 43
Circuit Theory. 44
The Opposite Switch (aka the NOT Logic Gate). 45
Build an Arduino NOT Logic Gate. 45
Upload the Arduino NOT Logic Gate Sketch. 46
Something to Think About. 50

6. The AND Logic Gate. 51
Parts List. 51
Circuit Theory. 52
The Arduino AND Logic Gate. 55
Upload the Arduino AND Logic Gate Sketch. 57
Something to Think About. 59

7. The OR Logic Gate. 61
Parts List. 61
Circuit Theory. 62
The Arduino OR Logic Gate. 64
Upload the Arduino OR Logic Gate Sketch. 66
Something to Think About. 69

8. Tilt Flasher. 71
Parts List. 71
Circuit Theory. 72
The Up-Down Sensor. 73
Something to Think About. 76

9. Multicolor RGB Flasher. 79
Parts List. 79
Circuit Theory. 80
The RGB Flasher. 81

iv Contents

Something to Think About. 86

10. The Magic Light Bulb. 87
Parts List. 87
Let’s Build a Magic Light Bulb. 88
Upload the Magic Light Bulb Sketch. 89
Circuit Theory. 91
Something to Think About. 92

11. Metal Checker: The Electronic Switch. 95
Parts List. 95
Let’s Build a Metal Checker. 96
Upload the Metal Checker Sketch. 98
Circuit Theory. 100
Something to Think About. 101

12. The Theremin. 103
Parts List. 103
Let’s Build a Theremin. 104
Upload the Theremin Sketch. 106
Circuit Theory. 109
Something to Think About. 110

13. An Arduino Ohmmeter. 111
Parts List. 111
Let’s Build an Arduino Ohmmeter. 112
Upload the Arduino Ohmmeter Sketch. 113
Circuit Theory. 115
Something to Think About. 117

14. The LCD News Reader. 119
Parts List. 119
Let’s Build the LCD. 120
Upload the LCD News Reader Sketch. 122
Circuit Theory. 128
Something to Think About. 129

15. A Logic Tester (with an RGB LED). 131
Parts List. 131

Contents v

Let’s Build a Logic Tester. 132
Upload the Logic Tester Sketch. 133
Circuit Theory. 135
Something to Think About. 136

16. A Logic Tester (with an LCD). 137
Parts List. 137
Let’s Build a Logic Tester. 138
Upload the Logic Tester Sketch. 139
Circuit Theory. 141
Something to Think About. 142

17. The Amazing Pushbutton (with Processing). 143
Parts List. 143
Let’s Build an Amazing Pushbutton. 144
Upload the Amazing Pushbutton Sketch. 146
Download and Install Processing Notes. 148
Let’s Visualize Digital Data with Processing. 148
Troubleshooting Tips for Processing. 155
Something to Think About. 156

18. The Terrific Tilt Switch (with Processing). 157
Parts List. 157
Let’s Build a Terrific Tilt Switch. 158
Upload the Terrific Tilt Switch Sketch. 159
Let’s Visualize Digital Data with Processing. 162
Something to Think About. 167

19. The Rocket Launching Game (with Processing). 169
Parts List. 169
Let’s Build a Rocket Game. 170
Upload the MultiDigital4 Sketch. 171
The Rocket Launcher with Processing. 174
Something to Think About. 181

20. Temperature Indicator (with Processing). 183
Parts List. 183
Let’s Build a Temperature Indicator. 184

vi Contents

Upload the Temperature Indicator Sketch. 185
The Negative Temperature Coefficient (NTC) Sensor with Processing. . . 188
Something to Think About. 191

21. Sweeping Servo. 193
Parts List. 193
Let’s Build a Servo Motor Tester. 194
Upload the Sweeping Sketch. 195
Something to Think About. 198

22. Electronic Cricket. 199
Parts List. 199
Let’s Build an Electronic Cricket. 200
Upload the Electronic Cricket Sketch. 201
Something to Think About. 204

23. A Pocket Stage Light. 205
Parts List. 205
Let’s Build a Pocket Stage Light. 206
Upload the Pocket Stage Light Sketch. 208
Something to Think About. 211

24. Electronic Pixel. 213
Parts List. 213
Let’s Build an Electronic Pixel. 214
Upload the Electronic Pixel Sketch. 216
Something to Think About. 219

25. The Metronome. 221
Parts List. 221
Let’s Build a Metronome. 222
Upload the Metronome Sketch. 225
Something to Think About. 228

26. The Secret Word Game. 231
Parts List. 231
Let’s Build a Secret Word Game. 232
Upload the Secret Word Game Sketch. 234
Rules for the Secret Word Game. 237

Contents vii

Something to Think About. 237

Index. 239

viii Contents

So, you’ve bought the Ultimate Microcontroller Pack to build some cool and fun
Arduino projects. Now all you need are some sample projects to build with it! The
Basic Arduino Projects book is here to help you! It’s got a wealth of cool devices and
gadgets to build with your Ultimate Microcontroller Pack. The projects in the book
explain the world of electronics using a fun and hands-on approach.

The motivation behind writing this book is based on several conversations with
Brian Jepson (Make: Books Senior Editor) and the need for a book that allows people
to explore the electronic parts and the Arduino within the Ultimate Microcontroller
Pack. The Arduino is a very popular Maker platform that allows you to explore elec-
tronics with an interactive approach. As awesome as a box of parts is, it’s difficult for
people with little electronics experience to begin making things with it. This book
solves that problem by letting you learn more about electronics while you make fun
projects with the parts in this kit. Basic Arduino Projects is a practical guide that
illustrates how a bunch of electronic parts, coupled with Arduino, can be trans-
formed into awesome devices and gadgets for education and play.

In addition, being an electrical engineer and educator, I’m very sensitive to deliver-
ing good instructional content to my students (adults and teenagers). This book was
written to attract young readers to the exciting world of electronics by building cool
and creative projects using the Ultimate Microcontroller Pack. This book is also in-
tended for Makers and novices who have heard about the Arduino but never ex-
perienced the fun and excitement that comes from building cool electronic gadgets
and devices with this open hardware platform.

By building and experimenting with the projects in this book, young readers, Mak-
ers, and electronic novices will learn how to:

• Read electronic circuit schematic and block diagrams.

• Assemble electronic circuits using the MakerShield prototyping board.

ix

Preface

• Build basic logic circuits using the Arduino as a programmable computer brain.

• Use an LCD display for displaying text and special characters.

• Create simple electronic controllers for LEDs and servo motors.

Last, you will learn how to create gadgets and devices for education and play using
imagination and the parts from the Ultimate Microcontroller Pack. Enjoy the Maker
adventure!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environ-
ment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values
determined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://www.family-science.net/electro_arduino.htm.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this

x Preface

book and quoting example code does not require permission. Incorporating a sig-
nificant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Make: Basic Arduino Projects by Don
Wilcher (Maker Media). Copyright 2014 Don Wilcher, 978-1-449-36066-5.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at bookpermissions@makermedia.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s
leading authors in technology and business.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, get exclusive access to manuscripts in development, and
post feedback for the authors. Copy and paste code samples, organize your favorites,
download chapters, bookmark key sections, create notes, print out pages, and ben-
efit from tons of other time-saving features.

Maker Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from MAKE and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

MAKE
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

MAKE unites, inspires, informs, and entertains a growing community of resourceful
people who undertake amazing projects in their backyards, basements, and
garages. MAKE celebrates your right to tweak, hack, and bend any technology to
your will. The MAKE audience continues to be a growing culture and community
that believes in bettering ourselves, our environment, our educational system—our
entire world. This is much more than an audience, it’s a worldwide movement that
Make is leading—we call it the Maker Movement.

Preface xi

For more information about MAKE, visit us online:

MAKE magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/basic-arduino.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

Acknowledgments
I would like to thank Brian Jepson (Senior Editor) for believing in the book concept
and allowing me to explore the Ultimate Microcontroller Pack in creative ways. Also,
I would like to thank Patrick Di Justo (Editor) for pulling out the really cool projects
from the original book proposal and coaching me to present them in fun and en-
tertaining ways for young readers.

My final acknowledgment goes to my wife, Mattalene, who patiently worked with
me on editing this book, keeping me on task with the writing/project builds, and
reviewing the email revision messages from my editors. To my children, Tiana,
D’Vonn, and D’Mar, thanks for being great kids while I worked on the book during
family time.

xii Preface

Resistor-Capacitor Timing Basics

In electronics, sometimes we want to keep a device on for a certain amount of time
even when an electrical switch is turned off. Ordinary pushbuttons used to turn
electronic devices on and off can easily be operated by a timed delay switch. How
awesome would it be to create such a device to delay turning off a simple LED? Such
a gadget could be used to trick your friends, family, or even the local Makerspace
when they see the LED staying on after the pushbutton has been released. With a
few electronic components from the Ultimate Microcontroller Pack, you can make
an LED (light-emitting diode) stay on for a few extra seconds when a pushbutton
switch is turned off. Figure 1-1 shows an assembled Trick Switch. The electronic
components required to build the Trick Switch are shown in the Parts List.

Parts List
• Arduino microcontroller

• SW1: mini pushbutton

• LED1: red LED

• C1: 100 uF electrolytic capacitor

• R1: 10K ohm resistor (brown, black, orange stripes)

• R2: 330 ohm resistor (orange, orange, brown stripes)

• Full-size clear breadboard

1

The Trick Switch 1

Figure 1-1. Trick Switch circuit built on a full-size clear breadboard (both the 100 uF electrolytic
capacitor and red LED negative pins are wired to ground)

Tech Note
You can create your own electrical circuits and test them using dia-
grams with an online simulator called Circuit Lab.

Let’s Build a Trick Switch
When you press the pushbutton switch on this device, the LED turns on. The ca-
pacitor will begin storing electrical energy from the +5VDC power supply circuit of
the Arduino. Releasing the pushbutton switch cuts off the flow of electricity from
the source, but the energy stored in the capacitor keeps the Arduino running for a
few extra seconds. The Arduino keeps the LED lit until the capacitor’s stored energy
is empty. You can build the Trick Switch using the electronic components from the
Parts List and the Fritzing wiring diagram shown in Figure 1-2. Here are the steps
required to build the electronic device:

1. From the Ultimate Microcontroller Pack, place the required parts on your work-
bench or lab tabletop.

2. Wire the electronic parts using the Fritzing wiring diagram of Figure 1-2 or the
actual Trick Switch device shown in Figure 1-1.

2 Make: Basic Arduino Projects

3. Type the Pushbutton sketch shown in Example 1-1 into the Arduino text editor.

4. Upload the Pushbutton sketch to the Arduino.

5. Press the mini pushbutton for a moment. The red LED turns on. After one to
two minutes, the red LED will turn off.

Figure 1-2. Trick Switch Fritzing diagram

Troubleshooting Tip
If the Trick Switch device doesn’t work, check for incorrect resistor
values, incorrect wiring, sketch typos, and improper orientation of
polarized electronic components (the LED and capacitor).

Example 1-1. Pushbutton sketch

/*
 Pushbutton Sketch

Reads the capacitor voltage at digital pin 2 and turns on and off a light-
emitting diode (LED) connected to digital pin 12.

 17 Nov 2012

Chapter 1: The Trick Switch 3

 by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 12; // the number of the LED pin

// variables will change:
int buttonStatus = 0; // variable for reading the pushbutton status

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop(){
 // read the status of the pushbutton value:
 buttonStatus = digitalRead(buttonPin);

 // check if the pushbutton is pressed
 // if it is, the buttonEvent is HIGH:
 if (buttonStatus == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

Tech Note
The ledPin value can be changed to 13 to operate the onboard LED.

Trick Switch with On/Off Indicators
In developing new products, electronics designers are always improving designs by
adding features and functions that excite the customer. The Trick Switch device you
built can be improved by adding an LED indicator. This LED indicates when the Trick
Switch timing cycle is done. Figure 1-3 shows you where to add a green LED to the
Trick Switch on the full-size clear breadboard.

4 Make: Basic Arduino Projects

Figure 1-3. Adding a green LED indicator to the Trick Switch circuit built on a full-size clear
breadboard

To complete the new product design, you need to make a few changes to the Push-
button sketch. Modify the sketch using the code changes shown in Example 1-2.

Example 1-2. Pushbutton sketch modified to include LED indicators

// constants won't change; they're used here to
// set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 12; // the number of the LED pin
const int ledPin13 = 13; // onboard LED

void setup() {
 // initialize the LED pins as outputs:
 pinMode(ledPin, OUTPUT);
 pinMode(ledPin13, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 int buttonStatus;
 buttonStatus = digitalRead(buttonPin);

 // check if the pushbutton is pressed
 // if it is, the buttonStatus is HIGH:
 if (buttonStatus == HIGH) {

Chapter 1: The Trick Switch 5

 // turn LED on:
 digitalWrite(ledPin, HIGH);
 // turn off onboard LED:
 digitalWrite(ledPin13,LOW);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 // turn on onboard LED:
 digitalWrite(ledPin13, HIGH);
 }
}

After you’ve saved the sketch changes and uploaded them to the Arduino, the green
LED will turn on. When you press the mini pushbutton, the green LED will turn off,
and the red LED will turn on. Pretty awesome stuff. Enjoy!

The block diagram in Figure 1-4 shows the electronic component blocks and the
electrical signal flow for the Trick Switch. A Fritzing electronic circuit schematic di-
agram of the switch is shown in Figure 1-5. Electronic circuit schematic diagrams
are used by electrical/electronic engineers to design and build cool electronic prod-
ucts for society.

Figure 1-4. Trick Switch block diagram

Something to Think About
Try different resistor and capacitor values and see what happens. Can you detect
any patterns? How can a small piezo buzzer be used with the Trick Switch?

6 Make: Basic Arduino Projects

Figure 1-5. Trick Switch circuit schematic diagram

Chapter 1: The Trick Switch 7

Resistor-Capacitor Timing Basics

Designing and building new electronic devices is quite easy when you know the
secret ingredient to rapid design. The technique is to take an existing electronic
device and make a small change to it. For example, the Trick Switch project can easily
be changed to a noncontact device by adding a sensor. With the right sensor, a hand
wave can turn the LED on. The RC timing circuit wired to the sensor signals the
Arduino to turn it off. In this chapter, you will build a light sensor circuit to turn on
an LED with the wave of your hand and automatically turn it off. The Ultimate Mi-
crocontroller Pack has all the electronic parts you need to the build the project.
Figure 2-1 shows the Sunrise-Sunset Light Switch device.

Parts List
• Arduino microcontroller

• SW1: mini pushbutton

• LED1: red LED

• LED2: green LED

• C1: 100 uF electrolytic capacitor

• R1: 10K ohm resistor (brown, black, orange stripes)

• R2: 330 ohm resistor (orange, orange, brown stripes)

• R3: photocell

• Full-size clear breadboard

9

Sunrise-Sunset Light
Switch 2

Figure 2-1. Sunrise-Sunset Light Switch circuit built on a full-size clear breadboard (the 100 uF
electrolytic capacitor and the red and green LED negative pins are wired to ground)

Let’s Build a Sunrise-Sunset Light
Switch
You can build a Sunrise-Sunset Light Switch by modifying the Trick Switch device
from Chapter 1. The main change you will make is to remove the mini pushbutton
and replace it with a photocell. You will also add a green LED to pin D13 of the
Arduino. Refer to the Parts List for all the electronic parts required for this project.
Here are the steps required to build the electronic device:

1. From the Ultimate Microcontroller Pack, place the required parts on your work-
bench or lab tabletop.

2. Wire the electronic parts using the Fritzing diagram of Figure 2-2 or the actual
Sunrise-Sunset Light Switch device shown in Figure 2-1.

3. Type Example 2-1 into the Arduino IDE.

4. Upload the Sunrise-Sunset sketch to the Arduino. The green LED will be on.

10 Make: Basic Arduino Projects

5. Wave your hand over the photocell for a moment. The red LED turns on. After
a few seconds, the red LED will turn off, and the green LED will turn on.

Figure 2-2. Sunrise-Sunset Light Switch Fritzing diagram

Example 2-1. Sunrise-Sunset Light Switch sketch

/*
 Sunrise-Sunset Light Switch

 Turns on and off a light-emitting diode (LED) connected to digital
 pins 12 and 13 after 10 to 20 seconds, by waving a hand over a photocell
 attached to pin 2.

 23 Nov 2012
 by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
const int lightsensorPin = 2; // the number of the light sensor pin

Chapter 2: Sunrise-Sunset Light Switch 11

const int redledPin = 12; // the number of the red LED pin
const int greenledPin13 = 13; // onboard LED and green LED pin

// variables will change:
int sensorState = 0; // variable for reading light sensor status

void setup() {
 // initialize the LED pins as outputs:
 pinMode(redledPin, OUTPUT);
 pinMode(greenledPin13, OUTPUT);
 // initialize the light sensor pin as an input:
 pinMode(lightsensorPin, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 sensorState = digitalRead(lightsensorPin);

 // check if the light sensor is activated
 // if it is, the sensorState is HIGH:
 if (sensorState == HIGH) {
 // turn red LED on:
 digitalWrite(redledPin, HIGH);
 // turn off onboard LED and green LED:
 digitalWrite(greenledPin13, LOW);
 }
 else {
 // turn red LED off:
 digitalWrite(redledPin, LOW);
 // turn on onboard LED and green LED;
 digitalWrite(greenledPin13, HIGH);
 }
}

Circuit Theory
The Sunrise-Sunset Light circuit operates like the Smart Switch, except you don’t
have to use a mini pushbutton to start the timing function. The mini pushbutton
has instead been replaced with a light sensor called a photocell. A photocell is a
variable resistor that changes its resistance based on the amount of light touching
its surface. Light falling on a photocell will decrease its resistance value. No light will
increase its resistance value. Figure 2-3 shows the resistor-capacitor (RC) timing
circuit with a photocell variable resistor symbol.

12 Make: Basic Arduino Projects

Figure 2-3. RC timing circuit with a photocell (variable resistor)

Tech Note
Another type of variable resistor is a 3-pin electronic part known as
a potentiometer. By rotating its shaft, the internal resistance value
changes. Potentiometers are used in electronic products like radios
and TVs to control the volume or sound level.

A photocell is a small electronic component with two leads protruding from a light-
sensitive pellet. On top of the pellet is an etched series of squiggly lines. The lines
etched on its surface are the resistance portion of the photocell. An actual photocell
part can be seen in Figure 2-4.

Figure 2-4. Photocell (a light-dependent resistor)

Chapter 2: Sunrise-Sunset Light Switch 13

Tech Note
LDR (light-dependent resistor) is another word used for photocell.

If you know someone with a DMM (digital multimeter), have him attach your
photocell to it. By waving your hand over the photocell, you will see the light-
sensitive part change its resistance based on the amount of light touching it. This
variable resistance feature will be used to turn on an LED. In the Sunrise-Sunset
project (a light-activated switch), the green LED will be on first. Placing your hand
over the photocell briefly will turn on the red LED. After the RC timing circuit has
completed its charging-discharging cycle, the red LED turns off followed by the
green LED turning on.

Troubleshooting Tip
Due to the sensitivity of the Sunrise-Sunset Light Switch, for best
operating results, use ambient (i.e., natural) lighting when testing
the device.

Sunrise-Sunset Detector with Serial
Monitor
This Ultimate Microcontroller project demonstrates the power of electronic sensors
to detect physical stimuli such as light, sound, and pressure. With a slight modifi-
cation to the sketch, messages can scroll across a Serial Monitor. The Arduino IDE
has a Serial Monitor for displaying the messages produced by the Arduino. You can
access the Serial Monitor by following these two steps:

1. Move your mouse to the main toolbar of the Arduino IDE and click Tools.

2. Move the cursor, highlight “Serial Monitor,” and click it.

The Serial Monitor will be displayed on your computer’s screen. It’s just that easy!
The modifications to your sketch to display the messages “Sunrise” and “Sunset” on
the Serial Monitor are shown in Example 2-2.

Example 2-2. Sunrise Sunset Detector with Serial Monitor sketch

const int lightsensorPin = 2; // the number of the light sensor pin
const int redledPin = 12; // the number of the red LED pin
const int greenledPin13 = 13; // onboard LED and green LED pin

// variables will change:
int sensorState = 0; // variable for reading light sensor status

void setup() {
 // initialize the LED pins as outputs:
 pinMode(redledPin, OUTPUT);

14 Make: Basic Arduino Projects

 pinMode(greenledPin13, OUTPUT);
 // initialize the light sensor pin as an input:
 pinMode(lightsensorPin, INPUT);
 // initialize serial communications at 9600 bps:
 Serial.begin(9600); // Add code instruction here!
}

void loop(){
 // read the state of the light sensor value:
 sensorState = digitalRead(lightsensorPin);

 // check if the light sensor is activated
 // if it is, the sensorState is HIGH:
 if (sensorState == HIGH) {
 // turn red LED on:
 digitalWrite(redledPin, HIGH);
 // turn off onboard LED and green LED:
 digitalWrite(greenledPin13, LOW);
 // display message
 Serial.println("Sunset\n"); // Add code instruction here!

 }
 else {
 // turn red LED off:
 digitalWrite(redledPin, LOW);
 // turn on onboard LED and green LED;
 digitalWrite(greenledPin13,HIGH);
 // display message
 Serial.println("Sunrise\n"); // Add code instruction here!
 }
}

With the modifications made to the original sketch, upload it to the Arduino and
open the Serial Monitor. As you wave your hand over the photocell, you see the
messages “Sunrise” (no hand over the sensor) and “Sunset” (hand over the sensor)
displayed on the Serial Monitor. Figure 2-5 shows the two messages displayed on
the Serial Monitor.

Experiment with the location of the Sunrise-Sunset detector to obtain the best cir-
cuit response. Enjoy!

The block diagram in Figure 2-6 shows the electronic component blocks and the
electrical signal flow for the Sunrise-Sunset Light Switch. A Fritzing electronic circuit
schematic diagram of the switch is shown in Figure 2-7. Electronic circuit schematic
diagrams are used by electrical/electronic engineers to design and build cool elec-
tronic products for society.

Chapter 2: Sunrise-Sunset Light Switch 15

Figure 2-5. Serial Monitor displaying “Sunset” and “Sunrise” messages

Figure 2-6. Sunrise-Sunset Light Switch block diagram

Tech Note
Always document your experiments and design changes in a lab
notebook in case you develop that million dollar idea!

Something to Think About
How can the Serial Monitor display actual light sensor data?

16 Make: Basic Arduino Projects

Figure 2-7. Sunrise-Sunset Light Switch circuit schematic diagram

Chapter 2: Sunrise-Sunset Light Switch 17

Sensors allow people to operate consumer and industrial products using physical
stimuli such as touch, sound, and motion. In Chapter 2, you controlled two LEDs
with the wave of your hand; the light-activated switch used a photocell to detect
the presence of your hand over the sensor.

In this chapter, we’ll build a gadget to easily detect object orientation using a tilt
control switch to control a servo motor. This is an awesome device to build and show
your Maker smarts to family and friends. By rotating the tilt control switch in an
upright position, you’ll be able to operate a servo motor. Figure 3-1 shows the Tilt
Sensing Servo Motor Controller.

Parts List
• Arduino microcontroller

• SW1: tilt control switch

• JI: servo motor

• R1: 1K ohm resistor (brown, black, red stripes)

• Pair of alligator test leads or equivalent

• Full-size clear breadboard

19

Tilt Sensing Servo
Motor Controller 3

Figure 3-1. Tilt Sensing Servo Motor Controller built on a full-size clear breadboard

Let’s Build a Tilt Sensing Servo Motor
Controller
You can control a servo motor’s rotation direction through orientation detection
using a tilt control switch. In this project, you will build a Tilt Sensing Servo Motor
Controller. Refer to the Parts List for all the electronic components required for this
project. Here are the steps used to build the electronic device:

1. From the Ultimate Microcontroller Pack, place the required parts on your work-
bench or lab tabletop.

2. Assemble the servo motor with the appropriate mechanical assembly attach-
ment, as shown in Figure 3-2 (left).

3. Strip insulation from three ¼-inch solid wires and insert them into the servo
motor’s mini connector, as shown in Figure 3-2 (right).

20 Make: Basic Arduino Projects

Figure 3-2. Servo motor with mechanical assembly attachment and modified servo motor wire
connector (left); close-up of modified servo motor wire connector (right)

4. Place and secure the servo motor on the full-size clear breadboard with hookup
wire, as shown in Figure 3-3.

5. Insert the modified servo motor wire connector into the full-size clear bread-
board, as shown in Figure 3-4.

6. Wire the electronic parts using the Fritzing diagram of Figure 3-5, or the actual
project shown in Figure 3-1.

Chapter 3: Tilt Sensing Servo Motor Controller 21

Figure 3-3. Placing and securing the servo motor on the full-size clear breadboard

Figure 3-4. Modified servo motor wire connector inserted into the full-size clear breadboard

22 Make: Basic Arduino Projects

Figure 3-5. Tilt Sensing Servo Motor Controller Fritzing diagram

Upload the Tilt Sensor Sketch
With the Tilt Sensing Servo Motor Controller circuit built on the full-size clear bread-
board, it’s time to upload the sketch:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 3-1 into the software’s text editor.

3. Upload the sketch to the Arduino.

4. Rotate the tilt control switch back and forth. The servo motor will spin in the
same direction as the tilt control switch orientation.

Troubleshooting Tip
Rotate the tilt control switch slowly and smoothly to get the best
response from the servo motor.

Chapter 3: Tilt Sensing Servo Motor Controller 23

Example 3-1. Tilt Control Switch sketch

/* This sketch controls a servo motor using a tilt control switch!
 *
 * 12 December 2012
 * by Don Wilcher
 *
 */

#include<Servo.h> // include Servo library
int inPin = 2; // the tilt control switch is wired to Arduino D2 pin
int reading; // the current reading from the input pin
Servo myservo; // create servo motor object

void setup()
{
 myservo.attach(9); // attach servo motor to pin 9 of Arduino
 pinMode(inPin, INPUT); // make pin 2 an input

}

void loop()
{
 reading = digitalRead(inPin); // store digital data in variable
 if(reading == HIGH) { // check digital data with target value
 myservo.write(180); // if digital data equals target value,
 // servo motor rotates 180 degrees
 delay(15); // wait 15ms for rotation
 }
 else { // if reading is not equal to target value,
 myservo.write(0); // rotate servo motor to 0 degrees
 delay(15); // wait 15ms for rotation
 }
}

A Simple Animatronic Controller Using
the Serial Monitor
Tilt control switching can be used in a variety of human machine control and physical
computing applications. In the theater, electromechanical puppets are often con-
trolled using electronic sensors and servo motors. The tilt control switch project you
built can be used as a simple animatronic controller. Example 3-2 shows an improved
Arduino sketch that limits the servo motor rotation to 90° and adds Serial Monitor
output for displaying information about the tilt control switch. Figure 3-6 shows the
tilt control switch digital data.

Tech Note
Physical computing allows people to interact with objects using
electronics, software, and sensors.

24 Make: Basic Arduino Projects

Figure 3-6. Digital data from tilt control switch: open tilt control switch (left), closed tilt control
switch (right)

Example 3-2. Tilt Control Switch with Serial Monitor

/* This sketch controls a servo motor using a tilt control switch!
 * Serial Monitor displays digital data from Tilt Control Switch.
 *
 * 15 December 2012
 * by Don Wilcher
 *
 */

#include<Servo.h> // include Servo library
int inPin = 2; // the Arduino input pin tilt control switch is wired to D2
int reading; // the current reading from the input pin
Servo myservo; // create servo motor object

void setup()
{
 myservo.attach(9); // attach servo motor to pin 9 of Arduino
 pinMode(inPin, INPUT); // make pin 2 an input
 Serial.begin(9600); // open communication port
}

void loop()
{
 reading = digitalRead(inPin); // store digital data in variable
 if(reading == HIGH) { // check it against target value (HIGH)

 myservo.write(90); // if digital data equals target value,
 // servo motor rotates 90 degrees
 Serial.println(reading); // print tilt control switch digital data
 delay(15); // wait 15ms for rotation
 }
 else { // if it's not equal to target value...

Chapter 3: Tilt Sensing Servo Motor Controller 25

Observing the Switch’s Behavior
If you have or know someone who has a DMM (digital multimeter), attach your tilt
control switch to it. Set the DMM to read resistance. By changing the orientation of
the tilt control switch, you will see the internal pins open and close based on the
changing resistance value. A closed tilt control switch has a DMM resistance reading
of zero ohms. An open tilt control switch has an infinite resistance value displayed
on the DMM. The pins’ switching conditions are used to rotate a servo motor. In the
Tilt Sensing Servo Motor Controller project, directional movement will occur by
orientation of the sensor circuit.

Note that an infinite resistance reading may be displayed as O or 1 on a DMM.

 myservo.write(0); // rotate servo motor to 0 degrees
 Serial.println(reading); // print tilt control switch digital data
 delay(15); // wait 15ms for rotation
 }
}

Experiment with the different rotation angle values and observe the servo motor’s
behavior. Happy puppetry!

The block diagram in Figure 3-7 shows the electronic component blocks and the
electrical signal flow for the Tilt Sensing Servo Motor Controller. A Fritzing electronic
circuit schematic diagram of the controller is shown in Figure 3-8. Electronic circuit
schematic diagrams are used by electrical/electronic engineers to design and build
cool electronic products for society.

Figure 3-7. Tilt Sensing Servo Motor Controller block diagram

Tech Note
Always document your experiments and design changes in a lab
notebook in case you develop that million dollar idea!

26 Make: Basic Arduino Projects

Figure 3-8. Tilt Sensing Servo Motor Controller circuit schematic diagram: orange wire (D9), red
wire (+5V), and brown wire (GND)

Circuit Theory
A tilt control switch is an electrical device used to detect orientation. Like using a
mini pushbutton and a light detector, a tilt control switch is another way to interact
with and control the Arduino.

The tilt control switch is a pair of small metal balls that make contact with pins and
close the circuit when the electrical device is held in an upright position. Figure 3-9
shows a typical tilt control switch. The tilt control switch can be wired to a resistor
to make an orientation detection sensor circuit.

Figure 3-10 shows an orientation detection sensor circuit and its electrical operating
conditions. The Arduino’s D2 pin is wired to the 1KΩ resistor in order to receive either
a zero or five volt control signal, based on the tilt control switch orientation. With
the tilt control switch pins open, the voltage across the 1KΩ resistor is zero volts.
When the switch pins are closed, the 1KΩ resistor has a five volt signal across it.

Chapter 3: Tilt Sensing Servo Motor Controller 27

Figure 3-9. Typical tilt control switch

Tech Note
As you rotate the tilt control switch, you can actually hear the small
metal balls move around.

Figure 3-10. Orientation detection sensor operation: open tilt control switch (left), closed tilt
control switch (right)

Tech Note
Tilt sensor is another name used for tilt control switch.

Something to Think About
How could the words “up” and “down” for the tilt sensor orientation be displayed
on the Serial Monitor?

28 Make: Basic Arduino Projects

LEDs in Parallel

LEDs can be used to light objects or to alert the user about the operating conditions
of a device. Light-emitting diodes are easy to use and they come in a variety of
shapes, sizes, and colors, as shown in Figure 4-1. The Arduino has a dedicated tiny
LED wired to pin D13. By uploading the Blink sketch to the Arduino, you can check
its electrical operation. Unlike the ordinary light bulb, LEDs must be wired properly
for them to work. In this chapter, you will learn how to wire two LEDs to the Arduino,
as shown in the block diagram in Figure 4-2. The LED projects in this chapter will
also use the Ultimate Microcontroller Pack’s MakerShield. To add a little creativity to
the LED projects, you will learn how to build an interactive toy using an ordinary
piece of cardboard.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 330 ohm resistor (orange, orange, brown stripes)

• R2: 330 ohm resistor (orange, orange, brown stripes)

• R3: 10K ohm potentiometer

• R4: photocell

• R5: 1K ohm resistor (brown, black, red stripes)

29

Twin LEDs 4

Figure 4-1. Variety of LEDs

Figure 4-2. Twin LEDs block diagram

30 Make: Basic Arduino Projects

Circuit Theory
An LED is an electronic part that emits light when properly wired in an electric circuit.
The LED has positive and negative leads protruding through a plastic body, as shown
in Figure 4-1. You can use the Arduino in electronic projects to operate multiple
LEDs. Figure 4-3 shows two LEDs wired to the Arduino D13 pin. The Arduino output
pins are capable of providing 40 mA (milliamperes) of electrical current, sufficient
to turn on two LED circuits wired in parallel.

Figure 4-3. Two LED circuits wired in parallel to the Arduino D13 pin; the arrows indicate the
LEDs are on

Twin LED Flasher
The circuit theory diagram shown in Figure 4-3 can easily be converted into a cool
electronic gadget. You can build a Twin LED Flasher using an Arduino, two 330 ohm
resistors, and LEDs, as shown in Figure 4-4. The Twin LED Flasher circuit schematic
diagram is shown in Figure 4-5. To make the flasher device compact, you can build
it on the MakerShield, as shown in Figure 4-6. Uploading the Blink sketch to the
Arduino allows you to test the MakerShield and the Twin LED Flasher. The Blink
sketch for the electronic flasher is shown in Example 4-1.

Chapter 4: Twin LEDs 31

Figure 4-4. Twin LED Flasher Fritzing diagram

Tech Note
The omega symbol (Ω) and the word ohm are used interchangeably.
For example, 10KΩ, 10K, and 10K ohm indicate the same value.

32 Make: Basic Arduino Projects

Figure 4-5. Twin LED Flasher: LED1 and LED2 with 330 ohm resistors are wired in parallel to the
Arduino D13 pin

Tech Note
The Build a MakerShield guide, part of Make: Projects, includes step-
by-step directions for building your own prototyping shield.

Chapter 4: Twin LEDs 33

Figure 4-6. MakerShield Twin LED Flasher

Example 4-1. Blink sketch

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.
 */

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output:
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

34 Make: Basic Arduino Projects

Build the Adjustable Twin LED Flasher
To make the Adjustable Twin LED Flasher, simply add a 10K ohm potentiometer to
the device. The flash rate can be adjusted to make the on/off toggling slower or
faster. The Fritzing diagram in Figure 4-7 along with the circuit schematic diagram
shown in Figure 4-8 will allow you to build the Adjustable Twin LED Flasher. The
MakerShield Adjustable Twin LED Flasher is shown in Figure 4-9 and the Adjustable
Twin LED Flasher sketch is shown in Example 4-2.

Figure 4-7. Adjustable Twin LED Flasher Fritzing diagram

Chapter 4: Twin LEDs 35

Figure 4-8. Adjustable Twin LED Flasher circuit schematic diagram

Example 4-2. Adjustable Twin LED Flasher sketch

/*
 Adjustable Twin LED Flasher
 Two LEDs will flash at a specified rate
 based on the 10K potentiometer setting.

 01 Jan 2013
 by Don Wilcher

 */

// Two LEDs with 330 ohm series resistors wired
// in parallel connected to pin 9.
int led = 9; // pin D9 assigned to led variable.

// A 10K potentiometer center pin wired to pin A0.
// One pin is wired to +5V with the other connected to GND.
int PotIn = A0; // pin A0 assigned to PotIn variable.

int Flash; // Flash variable to be used with "delay" instruction.

// the setup routine runs once when you press reset:
void setup() {

36 Make: Basic Arduino Projects

 // initialize the digital pin as an output:
 pinMode(led, OUTPUT);
 // initialize the analog pin as an input:
 pinMode(PotIn, INPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 Flash =analogRead(PotIn); // read 10K pot, store value in Flash variable
 digitalWrite(led, HIGH); // turn the LED on (HIGH voltage level = on)
 delay(Flash); // wait for a Flash time delay in seconds
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(Flash); // wait for a Flash time delay in seconds
}

Figure 4-9. MakerShield Adjustable Twin LED Flasher

Chapter 4: Twin LEDs 37

It’s Alive! Build a FrankenBot Toy
You can build an interactive toy that responds to changing light levels by removing
the 10KΩ potentiometer and adding a photocell wired to a 1KΩ resistor of the Ad-
justable Twin LED Flasher. Wiring a photocell to a 1KΩ resistor allows the Arduino
to read light levels applied to pin A0. Figure 4-10 and Figure 4-11 show the Fritzing
and circuit schematic diagrams for the Interactive Twin LED Flasher. The Maker-
Shield Interactive Twin LED is shown in Figure 4-12.The photocell leads are bent
down to allow FrankenBot’s cardboard head to mount nicely on top of the Maker-
Shield, as shown in Figure 4-13.

Figure 4-10. Interactive Twin LED Flasher Fritzing diagram

38 Make: Basic Arduino Projects

Figure 4-11. Interactive Twin LED Flasher circuit schematic diagram

The Adjustable Twin LED Flasher sketch shown in Example 4-2 is used to read the
different light levels and change the Arduino’s output flash rate.

Tech Note
Check out my YouTube clip to see the FrankenBot in action.

Chapter 4: Twin LEDs 39

Figure 4-12. Makershield Interactive Twin LED Flasher

Figure 4-13. FrankenBot: cut out opening for the photocell and LEDs to pass through cardboard
FrankenBot head (left); mount cardboard Frankenbot head on top of MakerShield Interactive
Twin LED Flasher (right)

40 Make: Basic Arduino Projects

Tech Note
The FrankenBot head template can be found on my Arduino Down-
loads page.

With the Example 4-2 sketch uploaded to the Arduino, FrankenBot’s LEDs will be
flashing at a rate based on the surrounding lighting conditions. Place your hand
over the photocell and watch the LEDs flash faster. Try different light sources and
notice the effect on FrankenBot’s LEDs. As always, record your tests and experiments
in a lab notebook!

Troubleshooting Tip
Check your wiring, the placement of the electronic parts on the
breadboard, and the photocell bent leads if the Twin LED Flasher is
not working.

Something to Think About
Why are FrankenBot’s LEDs affected by the changes in lighting conditions or
sources?

Chapter 4: Twin LEDs 41

The Arduino NOT Logic Gate

Computers use electrical signals to make basic decisions. By hard-wiring electric
circuits in specific ways, you can actually see simple logic decision operations at
work. Ordinary electronic parts, like electrical switches, resistors, and LEDs can make
AND, OR, and NOT logic gates when wired together properly.

The first computer logic decision circuit you will build is a NOT gate. You will also
learn how the Opposite Switch works in electrical/electronic and digital computer
circuits by building an Arduino NOT Logic Gate. Figure 5-1 shows the Arduino NOT
Logic Gate (the Opposite Switch) device. The Ultimate Microcontroller Pack has all
of the electronic parts to build this cool digital electronics device.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 330 ohm resistor (orange, orange, brown stripes)

• R2: 330 ohm resistor (orange, orange, brown stripes)

• R3: 1KΩ resistor (brown, black, red stripes)

• SW1: pushbutton switch

• LED1: red LED

• LED2: green LED

• Battery1: 9VDC battery pack

43

The Opposite Switch 5

Figure 5-1. The Arduino NOT Logic Gate

Circuit Theory
A NOT Logic Gate turns a TRUE signal into a FALSE signal. Let’s take the case of the
ordinary household light switch: When you flip the light switch in your home UP,
the light bulb turns on. Now, let’s mount the house light switch upside down. When
you send an UP signal to the switch, the light bulb will turn off. When you send a
DOWN signal to the switch, the light bulb turns on. To illustrate this basic FALSE-
TRUE operation, Figure 5-2 shows a simple NOT Logic Gate circuit you can build and
experiment with, using a few electronic components from the Ultimate Microcon-
troller Pack. After wiring the NOT Logic Gate circuit on the breadboard, the red LED
will be on. Pressing the pushbutton switch will turn the red LED off.

Figure 5-2. A simple NOT Logic Gate Fritzing wiring diagram

44 Make: Basic Arduino Projects

The Opposite Switch (aka the NOT
Logic Gate)
In digital electronics, a special circuit symbol is used for the NOT Logic Gate con-
sisting of a circle attached to the point of a triangle on its side. Figure 5-3 shows the
digital electronics circuit symbol for the NOT Logic Gate.

Figure 5-3. The NOT Logic Gate circuit symbol

In the Fritzing wiring diagram shown in Figure 5-2, the +3V battery provides the
input binary data for the NOT Logic Gate and the electrical circuit output using an
LED. With the switch open, the LED turns on. When the switch is closed, the LED
turns off. Therefore, the purpose of the NOT Logic Gate circuit is to make a decision
that is the opposite of the norm.

The NOT Logic Gate is traditionally used to invert a control signal used by smart
machines like robots. To show the NOT Logic Gate’s decision operation graphically,
a truth table (TT) is used; this is shown in Figure 5-4. A truth table is used in digital
electronics to show the operation of computer logic circuits in a simple data table.
The input column is the digital data or information applied to the logic gate. The
output column shows the logic gate’s decision.

Tech Note
Another term for a NOT Logic Gate in digital electronics is “Inverter.”

Figure 5-4. The NOT Logic Gate truth table

Build an Arduino NOT Logic Gate
We’re going to add an Arduino microcontroller to Figure 5-2 to control two LEDs
using a computer program or sketch. You will wire the pushbutton switch with a
1KΩ resistor to pin D2 and two LEDs (red and green). The LEDs will be attached to

Chapter 5: The Opposite Switch 45

pins D8 and D9. Figure 5-5 shows the Fritzing wiring diagram for this project. The
NOT Logic Gate can easily be built using the MakerShield prototyping board. This
prototyping board makes the device portable so you can carry it in your shirt pocket
or toolbox to demonstrate it to family, friends, and the local Makerspace. Refer to
Figure 5-1 for the MakerShield NOT Logic Gate device.

Tech Note
The MakerShield prototyping board is an awesome tool to create
cool electronic gadgets like the ones in this book or on the Make-
zine/Arduino projects website.

Upload the Arduino NOT Logic Gate
Sketch
With the Arduino NOT Logic Gate built on the MakerShield, it is time to upload the
sketch. Example 5-1 operates the red and green LEDs using a pushbutton switch.
Here are the steps you should follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 5-1 into the software’s text editor.

3. Upload the sketch to the Arduino.

4. Press the mini pushbutton switch for a moment.

46 Make: Basic Arduino Projects

Figure 5-5. The NOT Logic Gate Fritzing wiring diagram

The Arduino NOT Logic Gate will turn the green LED on once the sketch has been
uploaded to the microcontroller. Pressing the pushbutton switch will turn the green
LED off and the red LED will be on. Figure 5-6 shows the Arduino NOT Logic Gate in
operation. The green LED shows a TRUE output state when the pushbutton switch
in not pressed. Pressing the pushbutton switch shows a FALSE output state by turn-
ing on the red LED. Also,the != in the Arduino sketch is the computer programming
symbol for the logical NOT function.

Chapter 5: The Opposite Switch 47

Figure 5-6. The Arduino NOT Logic Gate: pressing the pushbutton switch turns on the red LED
(FALSE output)

Example 5-1. The Arduino NOT Logic Gate sketch

/*
 Arduino_NOT_Logic_Gate

 This sketch demonstrates the NOT(Inverter) Logic Gate operation.

 With the pushbutton switch not pressed (Logic LOW input), the green LED
 (Logic HIGH output indicator) is on and the red LED (Logic LOW output
 indicator) is off.
 Pressing the pushbutton turns the green LED off and the red LED on.

 11 September 2013
 by Don Wilcher

 */

// set pin numbers:
int buttonPin = 2; // the number of the pushbutton pin
int LEDred = 8; // pin number for the red LED
int LEDgreen = 9; // pin number for the green LED

// variables will change:
int buttonStatus = 0; // variable for reading the pushbutton status

void setup() {
 // initialize the LED pins as outputs:
 pinMode(LEDred, OUTPUT);
 pinMode(LEDgreen, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);

48 Make: Basic Arduino Projects

}

void loop(){
 // read the status of the pushbutton value:
 buttonStatus = digitalRead(buttonPin);

 // check if the pushbutton is not pressed
 //
 if (buttonStatus != HIGH) {
 // turn green LED on:
 digitalWrite(LEDgreen, HIGH);
 // turn red LED off:
 digitalWrite(LEDred, LOW);
 }
 else {
 // turn green LED off:
 digitalWrite(LEDgreen, LOW);
 // turn red LED ON:
 digitalWrite(LEDred, HIGH);
 }
}

After the sketch has been successfully uploaded to the Arduino microcontroller, the
green LED will be on and the red LED off. Press the pushbutton switch to toggle the
on/off states of the LEDs. To test the NOT Logic Gate, use the truth table shown in
Figure 5-7.

Figure 5-7. The Arduino NOT Logic Gate truth table

Troubleshooting Tip
If the LEDs do not turn based on the truth table, check your electrical
wiring and make sure the LEDs are properly oriented.

The block diagram in Figure 5-8 shows the building blocks and the electrical signal
flow for the Arduino NOT Logic Gate. Circuit schematic diagrams are used by elec-
trical engineers to quickly build cool electronic devices. The equivalent circuit sche-
matic diagram for the Arduino AND Logic Gate is shown in Figure 5-9.

Chapter 5: The Opposite Switch 49

Figure 5-8. The Arduino NOT Logic Gate block diagram

Figure 5-9. The Arduino NOT Logic Gate circuit schematic diagram

Something to Think About
How can a photocell be used to operate the Arduino NOT Logic Gate?

50 Make: Basic Arduino Projects

Two Pushbutton Switches in Series

The AND Logic Gate is another computer circuit used to make basic decisions with
electrical input signals. Building the AND Logic Gate requires wiring two pushbutton
switches to electrical contacts in a chain or series circuit. The AND Logic Gate’s output
decision is based on both parts of the input data (i.e., both pushbutton switches)
being in the same state.

In this chapter, you will learn about the AND Logic Gate by building an Arduino-
based AND Logic Gate using a photocell, a pushbutton switch, and an LED. Figure 6-1
shows the assembled Arduino AND Logic Gate. The Ultimate Microcontroller Pack
has all of the electronic parts to build this interactive tutorial device.

Parts List
• Arduino microcontroller

• MakerShield kit

• S1: pushbutton switch

• S2: pushbutton switch

• R1: 1KΩ resistor (brown, black, red stripes)

• R2: 10KΩ potentiometer (for basic AND Logic Gate circuit)

• R2: photocell (for Arduino AND Logic Gate circuit)

• R3: 1KΩ resistor (brown, black, red stripes) for basic AND Logic Gate circuit

• R3: 10KΩ resistor (brown, black, orange stripes) for Arduino AND Logic Gate
circuit

• R4: 330Ω resistor (orange, orange, brown stripes)

51

The AND Logic Gate 6

• LED1: green LED (for Arduino AND Logic Gate circuit)

• LED1: red LED (for basic AND Logic Gate circuit)

• Battery1: 3VDC battery pack

Figure 6-1. The assembled Arduino AND Logic Gate

Tech Note
In digital electronics, a TRUE state is when a data bit is set to 1, or an
output pin is set to +5 volts, or a switch is closed. A FALSE state is
when a data bit equals 0, or an output pin is set to 0 volts, or a switch
is open.

Circuit Theory
The AND Logic Gate is a computer circuit that outputs TRUE if the two pieces of
input data have the same state as each other. Digital electronics have two binary
states: TRUE or FALSE. The electric circuits used in digital electronics to build com-
puter logic gates will either be closed or open representing a TRUE or FALSE state.

The schematic diagram in Figure 6-2 shows a basic AND Logic Gate electric circuit
in two different states. On the left, we see the circuit with both pushbutton switches
open. In this state, the output for both pushbutton switches is FALSE, and the LED
will be off. On the right, we see the circuit when both switches are closed. In this
state, the output is TRUE, and the LED will be on.

52 Make: Basic Arduino Projects

The operation of the AND Logic Gate can easily be programmed into an Arduino
microcontroller, as shown in Figure 6-1. Creating an Arduino AND Logic Gate re-
quires a few basic electronic components found in the Ulitmate Microcontroller
Pack. The logical AND operator is part of the Arduino sketch library. The Arduino
AND Logic Gate will turn on an LED when two inputs are both TRUE and are logical
HIGH. “Why Use an Arduino Microcontroller to Build an AND Logic Gate?” on page
54 explains the advantages of using a smart chip to create logical gate functions.

Figure 6-2. Circuit schematic diagram showing an AND Logic Gate controlling an LED

Tech Note
When electrical/electronic components are connected with the
output of one component becoming the input of the next, we say
that they have made a series circuit.

Figure 6-3 shows the Fritzing wiring diagram.

Chapter 6: The AND Logic Gate 53

Figure 6-3. The AND Logic Gate Fritzing wiring diagram; the flat side of the LED is the negative
pin

Just like the NOT Logic Gate discussed in Chapter 5, the AND Logic Gate has a special
circuit symbol, shown in Figure 6-4. The truth table (TT) shows the logic gate oper-
ation. Figure 6-5 is an AND Logic Gate TT.

Figure 6-4. The AND Logic Gate circuit symbol

Figure 6-5. The AND Logic Gate truth table

54 Make: Basic Arduino Projects

Why Use an Arduino Microcontroller to
Build an AND Logic Gate?
The AND Logic Gate is a simple electrical circuit where a string of pushbutton
switches are wired in series. You can wire it up yourself right now, and get the same
results without an Arduino. So the question “Why use an Arduino microcontroller
to build an AND Logic Gate?” is very important.

The Arduino microcontroller, like all microcontrollers, has a bunch of programming
instructions that are essentially built around logic operators (AND, exclusive OR
[XOR], OR, and NOT [Complement(CPL)]). You can use these logic operators to make
decisons based on the state of the pushbutton switches (open or closed) and using
the appropriate logic operator. As you’ll see, you’ll actually be able to make the
same circuit behave differently, simply by changing the Arduino code! Aren’t com-
puters wonderful?

The Arduino AND Logic Gate
We’re going to replicate the AND gate using an Arduino. To make the circuit inter-
esting, we’re going to use a photocell to replace one of the pushbutton switches
from Figure 6-1. In Figure 6-6, we see the Arduino AND Logic Gate, with the LED
turned off. Placing a piece of tape over the photocell (to allow no light into it, thus
simulating nighttime) will make input pin D4 TRUE for the Arduino microcontroller.
Pressing the pushbutton switch allows input pin D3 to become TRUE. With both
inputs TRUE, the green LED turns on, as shown in Figure 6-7.

Figure 6-8 shows the Fritzing wiring diagram to use for building the Arduino AND
Logic Gate. As shown in Figures 6-1, 6-7, and 6-8, you can build the Arduino AND
Logic Gate on a MakerShield. The MakerShield makes the project portable so that
you can carry it to show family and friends the basic logic gate used in computers,
cell phones, robotics, and other smart electronic devices.

Chapter 6: The AND Logic Gate 55

Figure 6-6. The Arduino AND Logic Gate with LED turned off

Figure 6-7. The Arduino AND Logic Gate with LED turned on

56 Make: Basic Arduino Projects

Figure 6-8. The Arduino AND Logic Gate Fritzing wiring diagram

Tech Note
The flat side of an LED is the negative pin.

Upload the Arduino AND Logic Gate
Sketch
With the Arduino AND Logic Gate built on the MakerShield, it is time to upload the
sketch. Example 6-1 operates the green LED using a pushbutton switch and a
photocell. Here are the steps you’ll need to follow:

Chapter 6: The AND Logic Gate 57

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 6-1 into the software’s text editor.

3. Upload the sketch to the Arduino.

4. Press the mini pushbutton switch for a moment.

The Arduino AND Logic Gate will turn on the LED when the photocell is covered and
the pushbutton switch is pressed. Releasing the pushbutton switch, or placing a
light on the photocell, turns the LED off, because the AND condition (in which both
switches are closed) no longer exists.

The Arduino does this by using the && operator in the if statement. && is the computer
programming symbol for the logical AND function.

Example 6-1. The Arduino AND Logic Gate sketch

/*
 The Arduino AND Logic Gate

 Turns on an LED connected to digital
 pin 7, when pressing a pushbutton switch and covering a photocell
 attached to pins 3 and 4.

27 Jan 2013
Revised 4 September 2013
by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
int B = 3; // the number of the B pushbutton pin
int A = 4; // the number of the A pushbutton pin

const int Cout = 7; // the number of the LED pin

// variables will change:
int AStatus = 0; // variable for reading the A pushbutton status
int BStatus = 0;
void setup() {
 // initialize the LED pin as an output:
 pinMode(Cout, OUTPUT);
 // initialize the pushbutton pins as inputs:
 pinMode(B, INPUT);
 pinMode(A, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 AStatus = digitalRead(A);
 BStatus = digitalRead(B);

58 Make: Basic Arduino Projects

 // check if the pushbuttons are pressed
 // if it is, the buttonStatus is HIGH:
 if (AStatus == HIGH && BStatus ==HIGH) {
 // turn LED on:
 digitalWrite(Cout, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(Cout, LOW);
 }
}

After uploading the Arduino AND Gate Logic sketch to the Arduino microcontroller,
the green LED is turned off. As discussed earlier, pressing the pushbutton switch
and covering the photocell will turn on the green LED. If either input device is FALSE
(logic LOW), the LED turns off. To completely test the Arduino AND Logic Gate’s
operation, remember to use the TT shown in Figure 6-5.

The block diagram in Figure 6-9 shows the building blocks and the electrical signal
flow for the Arduino AND Logic Gate. Circuit schematic diagrams are used by elec-
trical engineers to quickly build cool electronic devices. The equivalent circuit sche-
matic diagram for the Arduino AND Logic Gate is shown in Figure 6-10.

Figure 6-9. The Arduino AND Logic Gate block diagram

Troubleshooting Tip
If you don’t see the green LED turn on with the proper input logic,
recheck the logic gate’s electrical wiring. Also, check to see if the
green LED’s negative pin is wired to GND on the breadboard.

Something to Think About
How can the photocell be wired to analog A0 and be used as a digital input pin?

Chapter 6: The AND Logic Gate 59

Figure 6-10. The Arduino AND Logic Gate circuit schematic diagram

60 Make: Basic Arduino Projects

Two Pushbutton Switches in Parallel

The OR Logic Gate is the final basic computer circuit used to make simple decisions
with electrical input signals. The OR Logic Gate is different from the AND circuit
because the two pushbutton switches are connected in parallel (instead of in ser-
ies as with the AND circuit). The OR Logic Gate’s output decision is based on either
one or the other input being TRUE. In this chapter, you will learn about the OR Logic
Gate by building an Arduino OR Logic Gate using one pushbutton switch and a
photocell. Figure 7-1 shows the assembled Arduino OR Logic Gate. The Ultimate
Microcontroller Pack has all of the electronic parts to build this cool digital computer
circuit.

Parts List
• Arduino microcontroller

• MakerShield kit

• S1: pushbutton switch

• S2: pushbutton switch

• R1: 1KΩ resistor (brown, black, red stripes)

• R1: 330Ω resistor (orange, orange, brown stripes) for basic OR Logic Gate circuit

• R2: photocell

• R3: 1KΩ resistor (brown, black, red stripes)

• R4: 330Ω resistor (orange, orange, brown stripes) for Arduino OR Logic Gate

• LED1: red LED for basic OR Logic Gate Circuit (green LED for Arduino OR Logic
Gate)

61

The OR Logic Gate 7

Figure 7-1. The assembled Arduino OR Logic Gate

Tech Note
When two or more electrical/electronic components are connected
across one voltage source via separate paths, this is called a parallel
circuit. In a parallel circuit, there are different ways that electricity
can flow.

Circuit Theory
The OR Logic Gate is another computer circuit providing a TRUE output based on
at least one input data value having a closed state. A basic OR Logic Gate electric
circuit schematic diagram is shown in Figure 7-2. The circuit schematic diagram on
the left shows one pushbutton switch closed and the other one open. The output
for this pushbutton switch combination is TRUE, indicated by the LED being on.
When both switches are open, as shown in the right circuit schematic diagram, the
LED will be off. In summary, if at least one of the pushbutton switches is TRUE, the
OR Logic Gate’s output will be TRUE. Therefore, the OR Logic Gate provides a TRUE
output when either input is TRUE. This is different from the AND gate, which requires
both inputs to be TRUE. To experiment with a basic OR Logic Gate circuit, the Fritzing
wiring diagram shown in Figure 7-3 can be built on a breadboard.

62 Make: Basic Arduino Projects

Figure 7-2. Circuit schematic diagram for the OR Logic Gate controlling an LED

Figure 7-3. A basic OR Logic Gate circuit Fritzing wiring diagram

Tech Note
If you need an OR Logic Gate for an electronics project, simply wire
two or more switches in parallel.

Just like the other logic gates discussed in Chapter 5 and Chapter 6, the OR Logic
Gate has a special circuit symbol as well, shown in Figure 7-4. The truth table (TT)
shows the logic gate operation. Figure 7-5 is an OR Logic Gate TT.

Chapter 7: The OR Logic Gate 63

Figure 7-4. The OR Logic Gate circuit symbol

Figure 7-5. The OR Logic Gate Truth Table

The Arduino OR Logic Gate
You can build a digital computer OR Logic Gate circuit using the Arduino micro-
controller and a few electronic components from the Ultimate Microcontroller
Pack. The green LED turns on when either the pushbutton switch OR the photocell
is TRUE. You can easily build the logic circuit using the Fritzing wiring diagram shown
in Figure 7-6. You can build this basic digital computer circuit on MakerShield, as
shown in Figure 7-1.

Did you notice that the Fritzing wiring diagram looks like the AND Logic Gate circuit
of Chapter 6? That’s because it is. The cool thing about using an Arduino (or any
other computer, really) is that often you can use the same physical circuit and make
it do different things, simply by changing the computer code. In this case, either
pressing the pushbutton switch OR placing your hand over the photocell will turn
on the green LED.

This cool gadget can become an automatic LED night light. If your home loses power
because of an electrical storm or the area substation is not operating, this device
can function as an automatic light source. The photocell is electrically wired to detect
darkness. When night falls (or when the power fails), the signal at pin D4 becomes
TRUE, and the Arduino microcontroller turns on the green LED, as in Figure 7-7. Or,
if you just want to turn the light on when it isn’t dark out, you can just hit the push-
button switch. This makes the signal at pin D3 TRUE, which again causes the Arduino
microcontroller to turn on the green LED.

64 Make: Basic Arduino Projects

Figure 7-6. The Arduino OR Logic Gate Fritzing wiring diagram

Chapter 7: The OR Logic Gate 65

Figure 7-7. The LED is on: the photocell is covered with tape

Tech Note
The incandescent light bulb is slowly being replaced by LEDs be-
cause of their low power consumption and long life.

Upload the Arduino OR Logic Gate
Sketch
With the Arduino AND Logic Gate built on the MakerShield, it is time to upload the
sketch. Example 7-1 operates the green LED using a pushbutton switch and a
photocell. Here are the steps you’ll need to take:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 7-1 into the software’s text editor.

3. Upload the sketch to the Arduino.

4. Press the mini pushbutton switch for a moment.

The Arduino OR Logic Gate will turn on the LED when the photocell is covered or
the pushbutton switch is pressed. Releasing the pushbutton switch or placing a light
on the photocell turns off the LED, because an OR condition (in which either switch
is closed) no longer exists.

The Arduino does this by using the || operator in the if statement. || is the computer
programming symbol for the logical OR function.

66 Make: Basic Arduino Projects

Example 7-1. The Arduino OR Logic Gate sketch

/*
 The Arduino OR Logic Gate

 Turns on an LED connected to digital
 pin 7, when pressing either a pushbutton switch or covering a photocell
 attached to pins 3 and 4.

 27 Jan 2013
 Revised 4 September 2013
 by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
int B = 3; // the number of the B pushbutton pin
int A = 4; // the number of the A pushbutton pin

const int Cout = 7; // the number of the LED pin

// variables will change:
int AStatus = 0; // variable for reading the A pushbutton status
int BStatus = 0;
void setup() {
 // initialize the LED pin as an output:
 pinMode(Cout, OUTPUT);
 // initialize the pushbutton pins as inputs:
 pinMode(B, INPUT);
 pinMode(A, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 AStatus = digitalRead(A);
 BStatus = digitalRead(B);

 // check if the pushbuttons are pressed
 // if it is, the buttonStatus is HIGH:
 if (AStatus == HIGH || BStatus ==HIGH) {
 // turn LED on:
 digitalWrite(Cout, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(Cout, LOW);
 }
}

After uploading the Arduino OR Logic Gate sketch to the Arduino microcontroller,
the green LED is off. Pressing the pushbutton switch or placing your hand over the

Chapter 7: The OR Logic Gate 67

photocell will turn on the green LED. To completely test the Arduino OR Logic Gate’s
operation, remember to use the TT shown in Figure 7-5.

The block diagram in Figure 7-8 shows the building blocks and the electrical signal
flow for the Arduino OR Logic Gate. Circuit schematic diagrams are used by electrical
engineers to quickly build cool electronic devices. The equivalent circuit schematic
diagram for the Arduino OR Logic Gate is shown in Figure 7-9.

Figure 7-8. The Arduino OR Logic Gate block diagram

Figure 7-9. The Arduino OR Logic Gate circuit schematic diagram

68 Make: Basic Arduino Projects

Troubleshooting Tip
If the LED doesn’t light up after uploading the sketch to the Arduino
microcontroller, check to see if it is connected to the correct output
pin. Also, check to see if the LED has been connected in the proper
orientation, with the short LED wire connected to GND.

Something to Think About
How can the Arduino OR Logic Gate be used to flash the green LED when the push-
button switch or the photocell is TRUE?

Chapter 7: The OR Logic Gate 69

Up-Down Sensor

In Chapter 4, the FrankenBot toy illustrated the method of flashing two LEDs wired
in parallel. The Arduino microcontroller made it easy to change the flash rate of two
LEDs using a 10KΩ potentiometer. How cool would it be to control an LED’s flash
rate by moving an electronic box in an up-down motion? This project is a small
window into the inner workings of gesture controls used to operate video games,
robots, and electronic toys using simple body motions. Now we’re going to build
and use orientation control, in the form of a tilt switch, to operate an Arduino flasher.
The parts for the project consist of a tilt control switch, three resistors, and two LEDs.
Figure 8-1 shows the Up-Down Sensor block diagram. You will find all of these elec-
tronic parts in the Ultimate Microcontroller Pack.

Parts List
• Arduino microcontroller

• MakerShield kit

• S1: tilt control switch

• R1: 1KΩ resistor (brown, black, red stripes)

• R2: 330Ω resistor (orange, orange, brown stripes)

• R3: 330Ω resistor (orange, orange, brown stripes)

• LED1: green LED

• LED2: red LED

71

Tilt Flasher 8

Figure 8-1. The Up-Down Sensor block diagram

Tech Note
A tilt control switch is sometimes called a tilt sensor.

Circuit Theory
As shown in Figure 8-1, the LED wiring is quite different from previous projects,
because an electrical ground and a +5V battery are used to individually operate
them. The idea behind this wiring technique is to allow one LED to be on at all times.
The circuit schematic diagram in Figure 8-2 on the left shows LED1 on while LED2
is off. The DPDT (double pole, double throw) switch upper contacts are open with
the bottom contacts closed. The closed contacts allow current from the battery
(+5V) to flow through the LED (LED1) turning it on. The open contacts turn off LED2
because no battery current is flowing through it. The Arduino microcontroller will
use this DPDT switching method for the Up-Down Sensor project to operate two
LED orientation indicators.

Figure 8-2. Circuit schematic diagram for a DPDT switch toggling two LEDs

72 Make: Basic Arduino Projects

Tech Note
Current is the movement or flow of electric charge.

The Up-Down Sensor
A simple Arduino microcontroller flasher can easily be turned into an Up-Down
Sensor by adding a tilt control switch. As shown in Figure 8-3, the tilt control sensor
is mounted on the MakerShield. When the tilt control switch is in the horizontal
position, both the red and green LEDs will flash. Placing the MakerShield on its side
will rotate the tilt control switch to vertical. The red LED will turn off and the green
LED will be on but not flashing. Rotating the MakerShield back to the horizontal
position causes the red and green LEDs to resume flashing. You can use either the
Fritzing diagram shown in Figure 8-4 or the circuit schematic diagram in Figure 8-5
to build the Up-Down Sensor.

Tech Note
Placing another tilt control switch on the MakerShield in a vertical
position can provide back and forth detection for robotics projects.

Figure 8-3. The Up-Down Sensor concept diagram

Chapter 8: Tilt Flasher 73

Figure 8-4. The Up-Down Sensor Fritzing diagram

74 Make: Basic Arduino Projects

Figure 8-5. The Up-Down Sensor circuit schematic diagram

You can build the Up-Down Sensor on a MakerShield, as shown in Figure 8-6. The
MakerShield allows you to carry it in a shirt pocket, computer bag, or purse for
convenience. Example 8-1 can be uploaded to the Arduino after entering the code
into the IDE’s text editor screen.

Example 8-1. Up-Down Sensor sketch

/*
 Up-Down Sensor with Flashing LEDs

 Flashes green and red LEDs at pin 8 when the tilt control
 switch attached to pin 3 is tilted. The green LED wired to
 pin 8 turns turns solid when no tilt condition is detected.

 05 Feb 2013
 Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
const int tiltPin = 3; // the number of the tilt control switch pin
const int ledPin = 8; // the number of the LED pin

// variables will change:
int tiltState = 0; // variable for tilt control switch status

void setup() {

Chapter 8: Tilt Flasher 75

 pinMode(ledPin, OUTPUT);
 // initialize the tilt control switch pin as an input:
 pinMode(tiltPin, INPUT);
}

void loop(){
 // read the state of the tilt control switch value:
 tiltState = digitalRead(tiltPin);

 // check if the tilt control switch contacts are closed
 // if they are, the tiltState is HIGH:
 if (tiltState == HIGH) {
 // turn Red LED on;
 digitalWrite(ledPin, HIGH);
 // wait 100ms:
 delay(100);
 // turn LED off:
 digitalWrite(ledPin,LOW);
 // wait 100ms:
 delay(100);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

After uploading the Up-Down Sensor sketch to the Arduino microcontroller, orient
the MakerShield so that the tilt control switch is horizontal. The red and green LEDs
should be flashing. Next, rotate the MakerShield onto its side. The red LED will be
off and the green LED will be on. Experiment with different MakerShield orientations
and notice the response of the LEDs. Remember to record your observations in your
lab notebook!

Troubleshooting Tip
If the LEDs don’t turn on after uploading the sketch to the Arduino
microcontroller, check that the correct output pin is being used.
Also, check to see that the LEDs are wired up properly, with the short
wires connected to GND.

Something to Think About
How can the Up-Down Sensor be used to turn a small electric DC motor on and off?

76 Make: Basic Arduino Projects

Figure 8-6. The Up-Down Sensor built on a MakerShield

Chapter 8: Tilt Flasher 77

Free Running Switcher

In past projects, one or two LEDs, usually red and/or green, were used as visual
indicators, letting us know that the Arduino had completed a task or operation. But
why limit ourselves to red and green? There is a type of LED that has three different
colors all in the same package. An RGB LED has three light-emitting diodes inside
of it: one red, one green, and one blue.

In this chapter, you will learn how to use a multicolor LED by building a simple RGB
Flasher. The parts you will use for the RGB Flasher are one fixed resistor, a multicolor
LED, and an Arduino microcontroller. The RGB Flasher will be built using the handy
MakerShield. The Ultimate Microcontroller Pack has all of the project parts you need.
Figure 9-1 shows the RGB Flasher block diagram.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 330Ω resistor (orange, orange, brown stripes)

• LED1: multicolor LED

Figure 9-1. The RGB Flasher block diagram

79

Multicolor RGB
Flasher 9

Circuit Theory
Figure 9-2 shows a typical RGB LED with the wiring pinout names. There are three
pins, one for each color, and one common pin for positive attachment to a power
supply. Like the ordinary LED, the positive and negative pins are wired to the positive
and negative points of a DC (direct current) circuit. To illustrate, Figure 9-3 shows
three SPST (single pole, single throw) switches wired to control red, green, and blue
LEDs. Closing the contacts on SPST switch SW1 will allow the battery’s (VBattery)
current to flow through the red LED, turning it on. The other switches (SW2 and SW3)
will turn on the green and blue LEDs as well. The individual colors can be lit se-
quentially or at random using the three SPST switches. The Arduino microcontroller
will provide a sequential switching order, allowing the red, green, and blue LEDs to
turn on accordingly.

Figure 9-2. A typical RGB LED with pinout names

80 Make: Basic Arduino Projects

Figure 9-3. Three SPST switches controlling an RGB LED

Tech Note
A common anode RGB LED has all of the positive leads connected
together to one lead.

The RGB Flasher
The RGB Flasher is an awesome Arduino microcontroller gadget that displays three
colors (red, green, and blue) on one LED. You can easily build the circuit on the
MakerShield, which will make it portable so you can carry it in your shirt pocket. You
can use either the Fritzing diagram shown in Figure 9-4 or the circuit schematic
diagram of Figure 9-5 to build the flasher.

Chapter 9: Multicolor RGB Flasher 81

Figure 9-4. The RGB Flasher Fritzing diagram

82 Make: Basic Arduino Projects

Figure 9-5. The RGB Flasher circuit schematic diagram

Tech Note
The common anode pin is the longest lead on the RGB LED.

After wiring the components onto the mini breadboard of the MakerShield pictured
in Figure 9-6, upload Example 9-1 to the Arduino microcontroller.

Chapter 9: Multicolor RGB Flasher 83

Figure 9-6. The RGB Flasher built on a MakerShield

Example 9-1. The RGB Flasher sketch

/*
 RGB Flasher

 Flashes the red, green, and blue LEDs of an RGB LED
 Turns on an LED on for one second, then off for one second for each
 color LED.

 15 Feb 2013
 Don Wilcher

 */

// RGB pins wired to the Arduino microcontroller.
// give them names:
int redled = 9;
int grnled = 10;
int bluled = 11;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pins as outputs:
 pinMode(redled, OUTPUT);
 pinMode(grnled, OUTPUT);

84 Make: Basic Arduino Projects

 pinMode(bluled, OUTPUT);
 // turn RGB outputs off:
 digitalWrite(redled, HIGH);
 digitalWrite(grnled, HIGH);
 digitalWrite(bluled, HIGH);
}

// the loop routine runs over and over again forever:
void loop() {

 digitalWrite(redled, LOW); // turn the red LED on
 delay(1000); // wait for a second
 digitalWrite(redled, HIGH); // turn the LED off
 delay(1000); // wait for a second
 digitalWrite(grnled, LOW); // turn the green LED on
 delay(1000); // wait for a second
 digitalWrite(grnled, HIGH); // turn the green LED off
 delay(1000); // wait for a second
 digitalWrite(bluled, LOW); // turn the blue LED on
 delay(1000); // wait for a second
 digitalWrite(bluled, HIGH); // turn the blue LED off
 delay(1000); // wait for a second
}

So far in this book, you’ve been taking an LED pin HIGH to light it.
This example takes a pin LOW to light it. This is because the common
pin on the RGB LED goes to +5V and each element’s pin (R, G, and
B) is a negative lead. As a result, each of those pins needs to be taken
LOW to allow current to flow. This means that taking a pin HIGH turns
it off. This is the reverse of what you’ve seen with discrete LEDs in
this book where there is one positive and one negative lead. In the
case of this RGB LED, there is one positive lead (the common
anode) and three negative leads (cathodes).

After uploading the RGB Flasher sketch to the Arduino Microcontroller, the red,
green, and blue LEDs will be individually flashing in sequence. You can change the
order of the LEDs by making new sketch RGB pin assignments along with appro-
priate breadboard wiring changes. Like a good scientist, remember to record your
observations, modified sketches, and circuit schematic diagrams in your lab
notebook!

Troubleshooting Tip
If the LEDs don’t turn on in the proper sequence, check your sketch
pin assignments, as well as the orientation of the component on the
MakerShield mini breadboard.

Chapter 9: Multicolor RGB Flasher 85

Something to Think About
Are there common cathode RGB LEDs? If so, what Arduino microcontroller wiring
changes are needed to operate them correctly?

86 Make: Basic Arduino Projects

Pushbutton Multicolor Flasher

Here’s a cool trick you can play on a friend using the Arduino and an RGB LED. Build
an RGB flasher with a mini pushbutton switch on an Arduino MakerShield. Show
your friend the MakerShield and tell him the mini light bulb is magical and it can
produce three colors: red, green, and blue. Have your friend close his eyes and chant
“Are Gee Bee” three times. Briefly press the mini pushbutton switch to start the RGB
flashing sequence. Tell your friend to open his eyes and watch in amazement the
mini color light show produced by the Arduino. The Magic Light Bulb device is shown
in Figure 10-1. The parts you will use for this project are two fixed resistors, an RGB
LED, a pushbutton switch, and an Arduino microcontroller. The Magic Light Bulb
will be built using the handy MakerShield. The Ultimate Microcontroller Pack has all
of the parts for the project.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 330Ω resistor (orange, orange, brown stripes)

• R2: 1KΩ resistor (brown, black, red stripes)

• LED1: RGB LED

87

The Magic Light Bulb 10

Figure 10-1. The Magic Light Bulb

Let’s Build a Magic Light Bulb
The Magic Light Bulb is an easy-to-build Arduino project using electronic parts from
the Ultimate Microcontroller Pack. You can build the electronic circuit on a bread-
board or the MakerShield. Building the Magic Light Bulb on the MakerShield allows
the project to fit nicely in the palm of your hand, which offers great visual appeal
for presentation to your friends. The wiring for the Magic Light Bulb can be con-
structed by using the Fritzing diagram shown in Figure 10-2.

Although the Fritzing diagram shows the breadboard and circuit components wired
separately from the Arduino microcontroller, the project can easily be built on a
MakerShield, as shown in Figure 10-1.

Tech Note
Check your wiring for errors using the Fritzing diagram before ap-
plying power to the circuit.

88 Make: Basic Arduino Projects

Figure 10-2. The Magic Light Bulb Fritzing diagram

Upload the Magic Light Bulb Sketch
With the Magic Light Bulb circuit built on the MakerShield, it’s time to upload the
sketch. Example 10-1 operates the RGB LEDs using a mini pushbutton switch. Here
are the steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 10-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

4. Press the mini pushbutton switch for a moment.

The Arduino will sequence the RGB LED tricolor pattern three times. Figure 10-3
shows the Magic Light Bulb in action.

Chapter 10: The Magic Light Bulb 89

Figure 10-3. The Magic Light Bulb running through the tricolor pattern

Example 10-1. The Magic Light Bulb sketch

/*

 Magic Light Bulb

 Flashes the red, green, and blue LEDs of an RGB LED three times by
 briefly pressing a mini pushbutton switch.

 25 Feb 2013
 Don Wilcher

 */

// Pushbutton switch and RGB pins wired to the Arduino microcontroller.
// give them names:
int redled = 9;
int grnled = 10;
int bluled = 11;
int Pbutton = 8;
// initialize counter variable
 int n =0;
// monitor pushbutton switch status:
int Pbuttonstatus = 0;

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pins as outputs:
 pinMode(redled, OUTPUT);
 pinMode(grnled, OUTPUT);
 pinMode(bluled, OUTPUT);
// initialize the digital pin as an input:

90 Make: Basic Arduino Projects

 pinMode(Pbutton, INPUT);

// turn RGB outputs off:
 digitalWrite(redled, HIGH);
 digitalWrite(grnled, HIGH);
 digitalWrite(bluled, HIGH);
}
// the loop routine runs 3x after the pushbutton is pressed:
void loop() {
 Pbuttonstatus = digitalRead(Pbutton); // read pushbutton status
 if(Pbuttonstatus == HIGH) { // if it's HIGH, start RGB Flasher
 for (n = 0; n < 3; n++){ // flash RGB LEDs 3x
 digitalWrite(redled, LOW); // turn the red LED on (LOW is on)
 delay(250); // wait for a 1/4 second
 digitalWrite(redled, HIGH); // turn the LED off (HIGH is off)
 delay(250); // wait for a 1/4 second
 digitalWrite(grnled, LOW); // turn the green LED on
 delay(250); // wait for a 1/4 second
 digitalWrite(grnled, HIGH); // turn the green LED off
 delay(250); // wait for a 1/4 second
 digitalWrite(bluled, LOW); // turn the blue LED on
 delay(250); // wait for a 1/4 second
 digitalWrite(bluled, HIGH); // turn the blue LED off
 delay(250); // wait for a 1/4 second
 }
}
 else{ // if pushbutton is LOW, turn LEDs off
 digitalWrite(redled, HIGH);
 digitalWrite(grnled, HIGH);
 digitalWrite(bluled, HIGH);
 }
}

Troubleshooting Tip
If the LEDs don’t turn on in the proper sequence, check your sketch
pin assignments as well as the orientation of the component on the
MakerShield mini breadboard.

Circuit Theory
The Arduino controls the tricolor pattern that is sent to the RGB LED, as shown in
Example 10-1. The RGB LED sequence or pattern is started with a short press of the
mini pushbutton switch. Within the sketch is a counter that plays the pattern for a
set number of times (in this case, three times). The replay number can easily be
changed by replacing the counter’s value of 3 to a different number.

The block diagram in Figure 10-4 shows the building blocks and the electrical signal
flow for the Magic Light Bulb. Circuit schematic diagrams are used by electrical
engineers to quickly build cool electronic devices. The equivalent circuit schematic
diagram for the Magic Light Bulb is shown in Figure 10-5.

Chapter 10: The Magic Light Bulb 91

The for Loop and Counters
When you briefly press the mini pushbutton switch, the RGB cycles its color se-
quence three times before turning off. A “for” loop is behind the magic. Here’s the
Arduino sketch code:

for (n = 0; n < 3; n++)

How does it work? The counter starts at zero (n = 0) and checks to see if the count
value is less than 3 (n < 3). If the counter is less than 3, the counter adds one to
itself (n++) to get the next count value. When the counter reaches a value of 3, the
Arduino turns off the RGB LED.

Change the “3” to a “4” in the preceding code, and observe the RGB LED after
uploading the modified sketch to the Arduino. Remember to record your observa-
tions and modified sketches into your lab notebook!

Figure 10-4. The Magic Light Bulb block diagram

Something to Think About
What happens to the Magic Light Bulb if the mini pushbutton switch is pressed
continuously?

92 Make: Basic Arduino Projects

Figure 10-5. The Magic Light Bulb circuit schematic diagram

Chapter 10: The Magic Light Bulb 93

An Electronic Tester

Have you noticed household objects that appear to be made of metal when they’re
not? You and a friend can build an instrument that checks the metal properties of
household objects in your home using an Arduino and a few electronic parts. The
Arduino Metal Checker emits a tone when a metal object is placed across its test
probes. With this awesome electronic instrument, you and a friend can uncover the
metal mysteries hidden inside of your home. The Metal Checker uses an Arduino,
two fixed resistors, one transistor, and a piezo buzzer. The Ultimate Microcontroller
Pack makes it convenient to build the instrument because of the variety of electronic
parts. The Metal Checker is shown in Figure 11-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• Q1: 2N3904 NPN transistor

• R1: 330Ω resistor (orange, orange, brown stripes)

• R2: 1KΩ resistor (brown, black, red stripes)

• PB1: piezo buzzer

95

Metal Checker: The
Electronic Switch 11

Figure 11-1. The Metal Checker device

Let’s Build a Metal Checker
The Metal Checker is a cool electronics device to build with an Arduino and elec-
tronic parts from the Ultimate Microcontroller Pack. You can build the electronic
circuit on an ordinary breadboard or the MakerShield. Building the Metal Checker
on the MakerShield allows the device to fit nicely inside a Maker’s toolbox or work-
bench drawers. Also, the MakerShield is small enough to carry with you in the field
for scientific metal checking activities. Figure 11-2 provides a Fritzing diagram for
building the Metal Checker.

96 Make: Basic Arduino Projects

Why Use a Transistor and Arduino for a
Metal Checker?
A simple Metal Checker can easily be built using an LED, a battery, and wire. So why
bother using an Arduino and a transistor? Based on the metal’s electrical conductive
properties, the transistor’s external base resistor will set an appropriate sensing
current to turn the transistor on. The transistor provides an approximate voltage
value of +5VDC to the Arduino. Upon detecting the +5VDC signal, the Arduino turns
on the piezo buzzer. Therefore, the transistor acts as an electronic switch, sensitive
to certain amounts of electrical current flowing through the metal. The electronic
switching and sensing functions can be adjusted based on the type of metal. Also,
different piezo buzzer sounds can be programmed into the Arduino to reflect var-
ious metals as well.

A simple Metal Checker cannot be modified to have such cool detecting features
because of the limited parts used.

Figure 11-2. The Metal Checker Fritzing diagram

The Metal Checker uses a small transistor for metal sensing. To correctly wire it with
the Arduino, Figure 11-3 shows a picture with the proper transistor pinout. Use both
the Fritzing diagram and the transistor pinout to ensure correct attachment to the
Arduino.

Chapter 11: Metal Checker: The Electronic Switch 97

Figure 11-3. The 2N3904 NPN transistor pinout

Although the Fritzing diagram shows the breadboard and electronic components
wired separately from the Arduino, the device can easily be built on a MakerShield,
as shown in Figure 11-1.

Tech Note
Check your wiring for errors using the Fritzing diagram before ap-
plying power to the circuit.

Upload the Metal Checker Sketch
With the Metal Checker circuit built on the MakerShield, it’s time to upload the
sketch. Example 11-1 operates the piezo buzzer using a small transistor. Here are
the steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 11-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

4. Touch the test probes together.

98 Make: Basic Arduino Projects

The Arduino will turn on the piezo buzzer. Now you’re ready to unlock the metal
mysteries hiding in your house!

Example 11-1. The Metal Checker sketch

/*
 Metal Checker

 Turns on and off a piezo buzzer at pin 7 when metal is placed across
 the sense wires of the metal sensor circuit attached to pin 6.

 The circuit:
 * Piezo buzzer attached from pin 7 to ground
 * Metal Checker sensor attached to pin 7
 * 1KΩ fixed resistor attached from pin 6 to ground

 March 2013
 by Don Wilcher

*/

// set pin numbers:
const int MSensePin = 6; // the number of the metal sense pin
const int PBuzzerPin = 7; // the number of the piezo buzzer pin

// variables will change:
int MetalStatus = 0; // variable for the metal sense status

void setup() {
 // initialize the LED pin as an output:
 pinMode(PBuzzerPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(MSensePin, INPUT);
}

void loop(){
 // read the state of the metal sense value:
 MetalStatus = digitalRead(MSensePin);

 // check if metal is present
 // if it is, the MetalStatus is HIGH:
 if (MetalStatus == HIGH) {
 // turn piezo buzzer on:
 digitalWrite(PBuzzerPin, HIGH);
 }
 else {
 // turn MetalStatus off:
 digitalWrite(PBuzzerPin, LOW);
 }
}

Chapter 11: Metal Checker: The Electronic Switch 99

The Transistor
The transistor is a small electronic component that can be used as an electronic
switch or an amplifier. There are two types of transistors: NPN and PNP. These tran-
sistor types can be used as electronic switches and amplifiers: the current flow in
the PNP transistor is opposite of that in the NPN transistor. The 2N3904 NPN tran-
sistor is being used as an electronic switch, replacing the mini pushbutton com-
ponent of previous Arduino projects. To learn more about the transistor, read
Charles Platt’s Make: Electronics (Maker Media, 2009).

Troubleshooting Tip
If the piezo buzzer doesn’t turn on, check your sketch pin assign-
ments as well as the orientation of the transistor on the MakerShield
mini breadboard.

Circuit Theory
The 2N3904 NPN transistor provides a signal to the Arduino, allowing it to turn on
the piezo buzzer. Placing a metal object on the test probes allows electrical current
to flow through the transistor, turning it on like a pushbutton switch. The 1KΩ (kilo-
ohm) resistor provides a control voltage (+5VDC) to the Arduino, allowing it to turn
on the piezo buzzer. Placing plastic objects on the test probes will not activate the
transistor, the Arduino, and the piezo buzzer.

The block diagram in Figure 11-4 shows the building blocks and the electrical signal
flow for the Metal Checker. A circuit schematic diagram used by electrical engineers
to quickly build cool electronic devices is shown in Figure 11-5. Circuit schematic
diagrams use electrical symbols for electronic components and are abbreviated
drawings of Fritzing diagrams.

Figure 11-4. The Metal Checker block diagram

100 Make: Basic Arduino Projects

Figure 11-5. The Metal Checker circuit schematic diagram

Something to Think About
Can a Metal Checker be used as a continuity tester?

Electrical Safety Tip
Under no circumstance should the Metal Checker be used to test
powered electrical/electronic devices. For your safety and the pro-
tection of the Arduino and MakerShield, do not use the Metal Check-
er to test any electrical/electronic devices!

Chapter 11: Metal Checker: The Electronic Switch 101

A Simple Transistor Amplifier

Electronic circuits that produce audible sounds have been used to create strange
and eerie audio effects for science-fiction movies like Star Wars and Marvel’s The
Avengers. The Theremin is a device that generates different electronic sounds by
waving hands over and around a pair of protruding antennas.

You can make your own awesome Theremin using a few electronic components
from the Ultimate Microcontroller Pack. The Theremin in this project will not use a
pair of antennas but a photocell to interact with the device. Also, a simple transistor
amplifier will be built to enhance the volume of the electronic sounds created with
your Theremin. The Parts List shows all of the electronic components available from
the Ultimate Microcontroller Pack to build your own Theremin. The Theremin built
on a MakerShield is shown in Figure 12-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• Q1: 2N3904 or S9013 NPN transistor

• R1: 10KΩ resistor (brown, black, orange stripes)

• R2: 1KΩ resistor (brown, black, red stripes)

• SPKR1: mini 8Ω speaker

• C1: 100 uF electrolytic capacitor

• PC1: photocell

103

The Theremin 12

Figure 12-1. The Theremin

Let’s Build a Theremin
The Theremin, invented in 1920 by Russian inventor Leon Theremin, uses an elec-
tronic circuit called an oscillator to create different sounds. In our Theremin, we’re
using the Arduino as an oscillator by programming it to select different tones based
on changing light levels. The tone changes are made by waving your hand over a
photocell, creating various sounds based on changing light levels. The circuit is built
on a breadboard with electronic components from the Ultimate Microcontroller
Pack, as just shown in the Parts List. Although the Theremin can be built on an
ordinary breadboard, the MakerShield makes the device small enough to carry in a
shirt pocket or Maker bag. Figure 12-2 shows a Fritzing diagram of the Theremin.
Also, the actual mini 8Ω speaker used in the Theremin project is shown in Figure 12-3.

104 Make: Basic Arduino Projects

Figure 12-2. The Theremin Fritzing diagram

The electronic sounds generated by the Arduino are wired to a simple transistor
amplifier. Pay close attention to the 100 uF electrolytic capacitor’s orientation
(shown on the Fritzing diagram) to prevent damage to the Arduino. Also, the NPN
transistor’s pinout for either a 2N3904 or S9013 electronic component is shown on
the Fritzing diagram’s breadboard. The mini 8Ω speaker color wire leads must be
connected correctly (as shown in Figure 12-2) in order for the audio electronic
sounds to be heard through it.

Chapter 12: The Theremin 105

Figure 12-3. The mini 8Ω speaker

Tech Note
The 100 uF electrolytic capacitor is called a polarized capacitor be-
cause of its positive and negative electrical leads. Like an LED, elec-
tricity flows through it easily in only one direction.

Upload the Theremin Sketch
It’s time to upload the sketch to the Arduino with the Theremin’s photocell and
simple transistor amplifier circuits built on the MakerShield. Example 12-1 operates
the Arduino-based Theremin using a photocell and a simple transistor amplifier
circuit. Here are the steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 12-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Theremin sketch has been uploaded to the Arduino, the mini 8Ω speaker
will begin emitting an electronic buzzing sound. A wave of your hand over the
photocell will change the tone coming from the speaker. With a small amount of

106 Make: Basic Arduino Projects

light on the photocell, the tone’s pitch will decrease. Placing the Theremin under a
light bulb increases the electronic sound’s pitch. Like the inventor Leon Theremin,
now you’re ready to create some really cool sounds from your Arduino-powered
Theremin. Remember to document your new designs and experiments in a lab
notebook!

Example 12-1. The Theremin sketch

/*
 Theremin

 Plays sound effects through a simple transistor
 amplifier using a photocell.

 I/O circuits:
 * A simple transistor amplifer wired to digital pin 8
 * A photocell wired to analog 0 and +5V
 * A 10K resistor wired to analog 0 pin to ground

*/

void setup() {
 // initialize serial communications (for debugging only):
 Serial.begin(9600);
}

void loop() {
 // read the sensor:
 int sensorReading = analogRead(A0);
 // print the sensor reading so you know its range:
 Serial.println(sensorReading);

 // map the analog input range (in this case, 400–1000 from
 // the photoresistor) to the output pitch range (120–1500 Hz)
 // change the minimum and maximum input numbers below
 // depending on the range your sensor's giving:
 int thisPitch = map(sensorReading, 400, 1000, 120, 1500);

 // play the pitch:
 tone(9, thisPitch, 10);
 delay(1); // delay in between reads for stability
}

Troubleshooting Tip
If the mini 8Ω speaker doesn’t emit sound, check your sketch for
programming errors and also check the orientation of the transistor
and the electrolytic capacitor on the MakerShield mini breadboard.

Chapter 12: The Theremin 107

The Serial Monitor
Sometimes you may have to debug or troubleshoot a sketch because of program-
ming errors. The Serial Monitor is an embedded tool of the Arduino software that
allows you to display information from your program, such as data variables, on
your computer screen. To display the data, use the simple Arduino instruction
Serial.println(). The Theremin sketch uses this to display the photocell sen-
sor data. As shown in Figure 12-4, the sketch instruction provides scrolling sensor
data from the photocell to the Serial Monitor.

To access the data monitor, add the Serial.begin(9600) instruction within the
void setup() function to open a communication link between your computer
and the Arduino. The 9600 sets the speed at which the Arduino sends data to your
computer. It means your Arduino is sending data to your computer at 9,600 bits
every second. (Another term used to describe the data transmission speed is “Baud”
rate.)

To display variables on the Serial Monitor, use the instruction Serial.print
In(variable name).

Figure 12-4. Photocell sensor data scrolling on the Serial Monitor

108 Make: Basic Arduino Projects

Circuit Theory
The 2N3904 or S39013 NPN transistor amplifies or increases the audio signal created
by the Arduino. The transistor has an amplification value called “gain” used to de-
termine the volume of an electrical signal. A typical gain value engineers use in
designing simple amplifiers like this one is 100. The mini 8Ω speaker can be wired
directly to pin D9 with a reasonable amount of volume, but the simple transistor
amplifier increases the sound by a factor of 100, making the Theremin sound louder.

The block diagram in Figure 12-5 shows the building blocks and the electrical signal
flow for the Theremin. A Fritzing software circuit schematic diagram of the Theremin
is shown in Figure 12-6. As a reminder, circuit schematic diagrams use electrical
symbols for electronic components and are abbreviated drawings of Fritzing
diagrams.

Figure 12-5. The Theremin block diagram

Figure 12-6. The Theremin circuit schematic diagram

Chapter 12: The Theremin 109

Something to Think About
What sounds would be emitted by the Theremin’s simple transistor amplifier if the
mini 8Ω speaker was replaced with a piezo buzzer? Try it!

110 Make: Basic Arduino Projects

The Ultimate Microcontroller Pack has a supply of resistors you can use in your
projects. These resistors are color coded to indicate their resistive value. If you al-
ready know how to read the color code—or once you learn how—you’ll be able to
glance at a resistor and tell automatically what its value is. But what about other
components in your projects? What about the LEDs, potentiometers, buzzers, or
even the wires themselves? How much resistance do they add to the circuit? To find
the answer, you’ll need an ohmmeter, a device that measures the resistance of an
electrical component. With a resistor, a breadboard, and a few wires, you can turn
your Arduino into this useful, awesome measuring device. The Arduino Ohmmeter
is shown in Figure 13-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 1KΩ resistor (brown, black, orange stripes)

• R2: other resistors chosen at random

111

An Arduino
Ohmmeter 13

Figure 13-1. An Arduino Ohmmeter

Let’s Build an Arduino Ohmmeter
This gadget tests the resistance of electrical components. Place the unknown resis-
tor you want to test in series with the reference resistor R1 connected to GND. The
Arduino will calculate the resistance and display it on the Serial Monitor. The resist-
ance of other electrical objects can be measured with the Arduino Ohmmeter as
well. Building the Arduino Ohmmeter on a MakerShield protoboard makes the de-
vice small enough to carry to a friend’s house to check his electronic projects.
Figure 13-2 shows the Fritzing diagram for the Arduino Ohmmeter.

112 Make: Basic Arduino Projects

Figure 13-2. An Arduino Ohmmeter Fritzing diagram

Upload the Arduino Ohmmeter Sketch
It’s time to upload the Ohmmeter sketch to the Arduino. Example 13-1 reads the
resistance of R2, and reports the result through the serial display. Here are the steps
you’ll need to take:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 13-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Ohmmeter sketch has been uploaded to the Arduino, place the unknown
resistor (shown as R2 on the Frizting diagram) you want to test in series with the
reference resistor R1 (1KΩ) connected to GND. The voltage across the R2 resistor
and its resistance value will be displayed on the Serial Monitor. Figure 13-3 shows
the output voltage (Vout) and the measured resistance of a 1KΩ resistor (R2) being
displayed on the Serial Monitor.

Chapter 13: An Arduino Ohmmeter 113

Figure 13-3. R2 and Vout measured and displayed on the Serial Monitor

Example 13-1. The Arduino Ohmmeter sketch

/*
 Arduino Ohmmeter

 */

// set up pins on Arduino for LED and test lead
int analogPin = 0; // reads the resistance of R2
int raw = 0; // variable to store the raw input value
int Vin = 5; // variable to store the input voltage
float Vout = 0; // variable to store the output voltage
float R1 = 1000; // variable to store the R1 value
float R2 = 0; // variable to store the R2 value
float buffer = 0; // buffer variable for calculation

void setup()
{
 Serial.begin(9600); // Set up serial

}

void loop()
{
 raw = analogRead(analogPin); // reads the input pin
 if(raw)
 {

114 Make: Basic Arduino Projects

 buffer = raw * Vin;
 Vout = buffer /1024.0; // calculates the voltage on the input pin
 buffer = (Vin / Vout) - 1;
 R2 = R1 / buffer;
 Serial.print("Vout: ");
 Serial.println(Vout); // outputs the information
 Serial.print("R2: "); //
 Serial.println(R2); //
 delay(1000);
 }
}

Tech Note
The value of R1 is stored using a float variable type in the sketch.
Change the value from 1000 (1KΩ) to a higher value when reading
higher resistance values.

Circuit Theory
The operation of the Arduino Ohmmeter is based around the concept of the voltage
divider. Two resistors are connected in series, and the reading is taken from where
the two resistors join. The voltage measured at that point is the ratio of R2/(R1+R2)
multiplied by the voltage in. For example, if R2 is 10K and R1 is 10K, then the ratio
is 1/2; multiplying that by 5 volts returns 2.5 volts.

The Arduino Ohmmeter uses that relationship between voltage and resistance
slightly differently. It knows that it started with 5 volts from the VCC pin. It also knows
that the reference R1 has a value of 1K ohms. It then reads the divided voltage in at
analog pin 0. Using those numbers, it is relatively easy to calculate the value of the
object at R2.

A Fritzing electronic circuit schematic diagram of the Ohmmeter is shown in
Figure 13-4. The Arduino Ohmmeter block diagram showing the connecting elec-
tronic components is shown in Figure 13-5. As a reminder, circuit schematic dia-
grams use electrical symbols for electronic components and are abbreviated draw-
ings of Fritzing diagrams.

Chapter 13: An Arduino Ohmmeter 115

Figure 13-4. An Arduino Ohmmeter circuit schematic diagram

116 Make: Basic Arduino Projects

Figure 13-5. An Arduino Ohmmeter circuit block diagram

Electrical Safety Tip
Under no circumstance should the Ohmmeter be used to test pow-
ered electrical/electronic devices. For your safety and the protection
of the Arduino and MakerShield, do not use the Ohmmeter to test
any powered electrical/electronic devices!

Something to Think About
How can a small slide switch be added to select between two unknown resistors for
measuring their resistance?

Chapter 13: An Arduino Ohmmeter 117

Have you ever wondered what cool projects you can build with the Ultimate Mi-
crocontroller Pack LCD (liquid crystal display)? So far in this book, the Arduino has
communicated with us via sound, via blinking LEDs, and via the Serial Monitor. What
would it be like if the Arduino could communicate through a self-contained screen
that could display two lines of text at a time? This project is all about using the LCD
to display information in characters made of letters, numbers, and a few special
symbols. You can make the information scroll and reverse, and you can even do
some very simple animations! We start learning about the LCD in Figure 14-1.

Parts List
• Arduino microcontroller

• Full-size clear breadboard

• R1: 10KΩ potentiometer

• LCD1: LMB162ABC 16x2 LCD

• 16-pin male header (electrical connector)

119

The LCD News
Reader 14

Figure 14-1. The LCD News Reader

Let’s Build the LCD
The first task in building the LCD News Reader is to solder a 16-pin male header to
the LCD. The Ultimate Microcontroller Pack has several male headers for building
your own Arduino shields. The header needs to be cut to a length to match the 16
LCD copper pad holes. Figure 14-2 shows the male header cut to the appropriate
LCD length. Insert the 16-pin male header through the copper pad holes and solder
them one by one to the LCD printed circuit board (PCB). Figure 14-3 shows the male
header soldered onto the LCD PCB.

Place the LCD onto the solderless breadboard, as shown in Figure 14-4. Wire LCD
pin number “1” to ground and “2” to +5VDC. Attach the center pin of the 10KΩ
potentiometer to pin number “3” of the LCD. Wire the remaining 10KΩ potentiom-
eters pins to +5VDC and ground as shown in the diagram. With the LCD wired to
the solderless breadboard, apply power to it using the Arduino. Adjust the 10KΩ
potentiometer until the LCD’s top row displays pixel squares, as shown in
Figure 14-4. Complete the rest of the tester wiring using the Fritzing diagram shown
in Figure 14-5.

120 Make: Basic Arduino Projects

Figure 14-2. The 16-pin male header cut to match the length of the LCD copper pad holes

Tech Note
A header is an electrical connector.

Figure 14-3. Male header soldered onto the LCD PCB

Chapter 14: The LCD News Reader 121

Tech Note
A special board with electronic components soldered to copper
pads and traces is called a printed circuit board (PCB).

Figure 14-4. Testing the LCD wiring on a full-size clear breadboard

Upload the LCD News Reader Sketch
It’s time to upload the sketch for the LCD News Reader to the Arduino. Here are the
steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 14-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the LCD News Reader sketch has been uploaded to the Arduino, the LCD will
display a message, as shown in Figure 14-1. According to computing tradition, the
first message you should display on a new piece of hardware is “Hello, World!”
Figure 14-6 shows the LCD News Reader displaying various screens.

122 Make: Basic Arduino Projects

Figure 14-5. The LCD News Reader Fritzing diagram

Example 14-1. The LCD News Reader sketch

/*
 The LCD News Reader

 20 August 2013

 */

// include the LCD library code:
#include <LiquidCrystal.h>

// set up pins on Arduino for LCD and test lead
LiquidCrystal lcd(12,11,5,4,3,2);

// set up the LCD's number of columns and rows

#define Xdelay 1900

String a;
String b;
String c;
String d;

Chapter 14: The LCD News Reader 123

void setup() {
 lcd.begin(16,2);
 lcd.setCursor(0,0);

 clearLCD();
 backlightOn();

 lcd.print("HELLO, WORLD!");
 delay(Xdelay);

}

void loop()
{

 char databuff[16];
 char dispbuff[16];

 // display on/off test
 for(int x = 5; x>0; x--)
 {
 delay(1000);
 displayOff();
 delay(1000);
 displayOn();
 }

 clearLCD();
 backlightOn();
 lcd.print("SLOW FADE ");
 fadeOut(100);
 fadeIn(10);

 // light up all segments as a test

 lcd.print("0123456789abcdef");
 delay(Xdelay);
 lcd.print("ghijklmnopqrstuv");
 delay(Xdelay);
 lcd.print("wxyz +?*&%$#()!=");
 delay(Xdelay);
 lcd.print(" ");
 delay(Xdelay);
 lcd.print(" ");
 delay(Xdelay);

 a = "0123456789abcdef";
 b = "ghijklmnopqrstuv";
 c = "wxyz +?*&%$#()!=";
 d = " ";

124 Make: Basic Arduino Projects

 selectLineTwo();
 lcd.print(a);
 delay(Xdelay);

 selectLineOne();
 lcd.print(a);
 selectLineTwo();
 lcd.print(b);
 delay(Xdelay);

 selectLineOne();
 lcd.print(b);
 selectLineTwo();
 lcd.print(c);
 delay(Xdelay);

 selectLineOne();
 lcd.print(c);
 selectLineTwo();
 lcd.print(d);
 delay(Xdelay);

 selectLineOne();
 lcd.print(d);
 selectLineTwo();
 lcd.print(d);
 delay(Xdelay);

 for (int x = 0; x<=5; x++)
 {
 for(int i = 15; i>=0; i--)
 {
 goTo(i);
 if (i%4 == 1)
 lcd.print("- ");
 if (i%4 == 2)
 lcd.print("I ");
 if (i%4 == 3)
 lcd.print("- ");
 if (i%4 == 0)
 lcd.print("I ");
 delay(100);
 }
 for(int i =0; i<=14; i++)
 {
 goTo(i);
 lcd.print(" @");
 delay(100);
 }
 }

 clearLCD();
}

Chapter 14: The LCD News Reader 125

void selectLineOne()
{
 lcd.write(0xFE); //command flag
 lcd.write(128); //position
 delay(10);
}
void selectLineTwo()
{
 lcd.write(0xFE); //command flag
 lcd.write(192); //position
 delay(10);
}
void goTo(int position)
{
if (position<16)
 {
 lcd.write(0xFE); //command flag
 lcd.write((position+128)); //position
 }else if (position<32)
 {
 lcd.write(0xFE); //command flag
 lcd.write((position+48+128)); //position
} else { goTo(0); }
 delay(10);
}

void clearLCD()
{
 lcd.write(0xFE); //command flag
 lcd.write(0x01); //clear command
 delay(10);
}
void backlightOn()
{
 lcd.write(0x7C); //command flag for backlight stuff
 lcd.write(157); //light level
 delay(10);
}
void backlightOff()
{
 lcd.write(0x7C); //command flag for backlight stuff
 lcd.write(128); //light level for off
 delay(10);
}

void backlightValue(int bv)
{
 int val = bv;
 if (bv < 128) val= map(bv, 0, 1023, 128, 157);
 if (bv > 157) val = map(bv, 0, 1023, 128, 157);

 lcd.write(0x7C); //command flag for backlight stuff
 lcd.write(val); //light level
 delay(10);

126 Make: Basic Arduino Projects

}

void displayOn()
{
 lcd.write(0xFE); //command flag
 lcd.write(0x0C); //clear command
 delay(10);
}

void displayOff()
{
 lcd.write(0xFE); //command flag
 lcd.write(0x08); //clear command
 delay(10);
}

void fadeOut(int fade)
{
 for (int x = 157; x>128; x--)
 {
 backlightValue(x);
 delay(fade);
 }
}

void fadeIn(int fade)
{
 for (int x = 128; x<=157; x++)
 {
 backlightValue(x);
 delay(fade);
 }
}

Chapter 14: The LCD News Reader 127

Figure 14-6. The LCD News Reader displaying various screens

Tech Note
A 16x2 LCD has two rows capable of displaying 16 characters each.

Circuit Theory
Example 14-1 displays a variety of characters, letters, and numbers based on C lan-
guage programming instructions. The sketch is programmed to test all segments
of the LCD as it cycles through the Arduino program. The Arduino sketch uses digital
data pins D2, D3, D4, D5, D11, and D12 of its microcontroller chip to send text mes-
sage information to the LCD. Time delays programmed into the sketch allow the
characters, letters, and numbers to be displayed continuously on the LCD. The 10K
potentiometer lets you adjust the contrast of the display.

The block diagram in Figure 14-7 shows the building blocks and the electrical signal
flow for the LCD News Reader. Circuit schematic diagrams are used by electrical
engineers to quickly build cool electronic devices. The equivalent circuit schematic
diagram for the LCD News Reader is shown in Figure 14-8.

128 Make: Basic Arduino Projects

Figure 14-7. The LCD News Reader block diagram

Figure 14-8. The LCD News Reader circuit schematic diagram

Something to Think About
How can a pushbutton switch be used to control the display?

Chapter 14: The LCD News Reader 129

The NOT, AND, and OR projects (Chapters 5, 6, and 7, respectively) use two basic
voltages: either +5VDC for TRUE or 0V for FALSE. These two signals let the Arduino
make basic logic decisions. In the computer world, these voltages are known as
binary data. In computers, binary data is represented by logic “1” (+5 volts DC) and
logic “0” (0 volts). You can build a cool electronic device to see binary data using a
few electronic components from the Ultimate Microcontroller Pack. The electronic
components to build this device are shown in the Parts List. The Logic Tester with
an RGB LED is shown in Figure 15-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 1KΩ resistor (brown, black, red stripes)

• R2: 330Ω resistor (orange, orange, brown stripes)

• PB1: pushbutton switch

• LED1: RGB (red, green, blue) LED

• Long test wire

131

A Logic Tester
(with an RGB LED) 15

Figure 15-1. A Logic Tester with an RGB LED

Let’s Build a Logic Tester
The Logic Tester is an easy-to-build Arduino microcontroller device. The RGB has
three individual color LEDs that allow binary data to be seen visually. The RGB LED
pinout is shown in Figure 15-2. Only the red and green LEDs will be used to show
the binary logic values of “0” and “1”. To ensure proper operation of the RGB LED,
the flat side of the LED should be facing the Test pushbutton switch. See Figure 15-2
for the proper orientation of the RGB LED. Some LEDS may have the blue and green
leads swapped. If yours is like that, you may need to move the G wire to the pin
labeled B.

Tech Note
Base 2 is the number format for binary data.

132 Make: Basic Arduino Projects

Figure 15-2. Fritzing diagram for a logic tester with an RGB LED

Upload the Logic Tester Sketch
With the Logic Tester built, it’s time to upload the sketch. As shown in
Example 15-1, the sketch operates an RGB LED using a pushbutton switch and two
fixed resistors. Here are the steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 15-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Logic Tester sketch has been uploaded to the Arduino microcontroller, the
RGB’s red LED will be on, as shown in Figure 15-1. Attaching the long test wire to
the +5VDC source on the MakerShield and pressing the pushbutton switch will allow
the RGB green LED to turn on, as shown in Figure 15-3.

Example 15-1. The Logic Tester sketch

/*
 Logic Tester with RGB LED

 Turns on the green LED when a logic "1" (+5V) signal is detected. The
 red LED will turn on at logic "0" (0V) signal. Also, when powering
 up the Arduino the red LED is on.

 4 May 2013
 Don Wilcher

 */

Chapter 15: A Logic Tester (with an RGB LED) 133

// RG pins wired to the Arduino microcontroller
// give them names:
int redled = 9;
int grnled = 10;
int probein = 8;
int probeStatus = 0;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pins as outputs:
 pinMode(redled, OUTPUT);
 pinMode(grnled, OUTPUT);
 pinMode(probein, INPUT);
 // turn RGB outputs off:
 digitalWrite(redled, HIGH);
 digitalWrite(grnled, HIGH);

}

// the loop routine runs over and over again forever:
void loop() {
// read the status of the test probe value:
probeStatus = digitalRead(probein);

if (probeStatus == HIGH) { // check if the test probe value is HIGH

 digitalWrite(redled, HIGH); // turn the red LED off (HIGH is off)
 digitalWrite(grnled, LOW); // turn the green LED on (LOW is on)
 }
else {

 digitalWrite(redled, LOW); // turn the red LED on
 digitalWrite(grnled, HIGH); // turn the green LED off

 }
}

Tech Note
HIGH is equivalent to binary 1 and LOW is equivalent to binary 0.

134 Make: Basic Arduino Projects

Figure 15-3. The Logic Tester checking +5VDC on MakerShield

Circuit Theory
Pressing the pushbutton will close the switch and allow +5 volts DC electrical current
to flow through the test circuit. The Arduino reads digital pin 8 to determine if the
pin is receiving +5 volts (i.e., set to HIGH) or if it is not receiving any voltage (i.e., set
to LOW). The Arduino takes that information and lights up the appropriate LED: the
green LED indicates that the pin is receiving +5 volts, and the red LED indicates 0
voltage. The digital pins used to operate the RGB’s red and green LEDs are D9 and
D10.

The block diagram in Figure 15-4 shows the electronic component blocks and the
electrical signal flow for the Logic Tester. A Fritzing electronic circuit schematic di-
agram of the tester is shown in Figure 15-5. Electronic circuit schematic diagrams
are used by electrical/electronic engineers to design and build cool electronic prod-
ucts for society.

Figure 15-4. The Logic Tester block diagram

Tech Note
A block diagram is used to show electrical signal flow of electronic
products.

Chapter 15: A Logic Tester (with an RGB LED) 135

Figure 15-5. The Logic Tester Fritzing circuit schematic diagram

Something to Think About
How can the Logic Tester be operated without a pushbutton switch?

136 Make: Basic Arduino Projects

The Logic Tester project in Chapter 15 allowed you to check the digital data values
the Arduino uses to control motors and LEDs. The tester’s two LEDs offer a quick way
to see the digital data. In this project, you’ll make an awesome change to the tester
by displaying “HIGH (1)” or “LOW (0)” data messages on an LCD. The electronic com-
ponents to build this device are shown in the Parts List. The Logic Tester with an LCD
is shown in Figure 16-1.

Parts List
• Arduino microcontroller

• Full breadboard

• R1: 10KΩ potentiometer

• R2: 1KΩ resistor (brown, black, red stripes)

• R3: 330Ω resistor (orange, orange, brown stripes)

• Q1: S39014 NPN transistor or equivalent

• PB1: pushbutton switch

• One long jumper wire

• LCD1: LMB162ABC 16x2 LCD (liquid crystal display) with soldered 16-pin male
header (electrical connector)

137

A Logic Tester
(with an LCD) 16

Figure 16-1. A Logic Tester with an LCD

Let’s Build a Logic Tester
Building this tester requires the use of an LCD. If this is your first time using an LCD,
I suggest reading Chapter 14. For help adding the 16-pin male header to the LCD,
see Figure 14-2 and Figure 14-3. The 10KΩ potentiometer’s center pin is wired to
pin number 3 of the LCD. The potentiometer’s remaining pins should be wired to
+5VDC and ground. Place the LCD onto the solderless breadboard, as shown in
Figure 16-2. LCD pin numbers 1 and 2 are wired to ground and +5VDC, respectively.
Adjust the 10KΩ potentiometer contrast control for the LCD for proper pixel-square
visibility. For reference on how to do this, see Figure 14-4.

Complete the rest of the tester wiring using the Fritzing diagram shown in
Figure 16-2.

138 Make: Basic Arduino Projects

Figure 16-2. Fritzing diagram for a Logic Tester with an LCD

Tech Note
Want to learn more about digital logic? Read Experiment 19 in
Charles Platt’s Make: Electronics.

Upload the Logic Tester Sketch
With the Logic Tester built, it’s time to upload the sketch. Example 16-1 operates an
LCD using a pushbutton switch, a transistor, and two fixed resistors. Here are the
steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 16-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Logic Tester sketch has been uploaded to the Arduino, the LCD will display
a message, as shown in Figure 16-1. Take the long jumper wire (test probe) from the
pushbutton switch and attach it to the +5V source of the Arduino (for reference, see
Figure 16-2). Press the pushbutton switch and the LCD will display “HIGH (1)” for the

Chapter 16: A Logic Tester (with an LCD) 139

+5V source, as shown in Figure 16-3. Impress the local Makerspace by testing Ar-
duino and digital electronic circuits with your Logic Tester!

Example 16-1. The Logic Tester sketch

/*
 Logic Tester
 LCD displays "HIGH (1)" when digital circuit signal is +5V. A "LOW (0)"
 is displayed when digital circuit signal is OV.

 27 April 2013
 Don Wilcher

 */

// include the LCD library code:
#include <LiquidCrystal.h>

// set up pins on Arduino for LCD and transistor lead:
LiquidCrystal lcd(12,11,5,4,3,2);
int xistorPin = 6;
int digitalStatus = 0; // variable for reading the digital circuit state

// initialize the transistor pin as an input and set up the LCD's number
// of columns and rows:
void setup() {
 lcd.begin(16,2);
 lcd.setCursor(0,0);
 lcd.print("LOGIC TESTER");
 pinMode(xistorPin, INPUT);

}

void loop() {
 // check if digital signal is HIGH or LOW:
digitalStatus = digitalRead(xistorPin);
if (digitalStatus == HIGH) {
 // if digital circuit signal is +5V, display HIGH (1):
 lcd.setCursor(0,1);
 lcd.print("HIGH (1) "); // display HIGH (1)
}
else {
 // if digital circuit signal is 0V, display LOW (0):
 lcd.setCursor(0,1);
 lcd.print(" LOW (0) ");
 }
}

140 Make: Basic Arduino Projects

Figure 16-3. The Logic Tester testing the Arduino’s +5V source

Tech Note
An electrical tester used to check digital circuits is called a logic
probe.

Circuit Theory
Pressing the pushbutton will close the switch and allow +5 volts DC electrical current
to flow through the circuit. The Arduino reads digital pin 6 to determine if the pin
is receiving +5 volts (i.e., set to HIGH), or if it is not receiving any voltage (i.e., set to
LOW). The Arduino takes that information and sends it to the LCD display via digital
pins D2, D3, D4, D5, D11, and D12. The LCD then displays “HIGH (1)” or “LOW (0)”
depending on the state of digital pin 6.

The block diagram in Figure 16-4 shows the electronic component blocks and the
electrical signal flow for the Logic Tester. A Fritzing electronic circuit schematic di-
agram of the tester is shown in Figure 16-5. Electronic circuit schematic diagrams
are used by electrical/electronic engineers to design and build cool electronic prod-
ucts for society.

Figure 16-4. The Logic Tester block diagram

Chapter 16: A Logic Tester (with an LCD) 141

Tech Note
The initial LCD message displayed before testing a digital circuit is
“LOW(0).”

Figure 16-5. The Logic Tester Fritzing circuit schematic diagram

Something to Think About
How can a small piezo buzzer be used with the Logic Tester?

142 Make: Basic Arduino Projects

With this project, you can make colorful lines and numbers move up and down your
computer screen as you press a simple pushbutton switch. To do that, this project
will introduce you to Processing, a simple, easy-to-learn programming language
(very much like the Arduino language) that makes it very easy to display graphics
on a computer screen. When you connect an Arduino to Processing, you can make
your Arduino draw on a screen!

The electronic components to build this device are shown in the Parts List. The
Amazing Pushbutton is shown in Figure 17-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 1KΩ resistor (brown, black, red stripes)

• PB1: pushbutton switch

• USB cable

143

The Amazing
Pushbutton (with

Processing) 17

Figure 17-1. The Amazing Pushbutton

Let’s Build an Amazing Pushbutton
Building the Amazing Pushbutton requires the use of a USB cable to send digital
information from the Arduino to a computer screen. As shown in Figure 17-1, the
device is quite simple to build, using only a 1KΩ fixed resistor and a pushbutton
switch. The two components are connected in series. Where the two electronic
components tie together, a jumper wire connects between them and pin D7 of the
Arduino microcontroller.

Complete the rest of the Amazing Pushbutton wiring using the Fritzing diagram
shown in Figure 17-2. The placement of the parts is not critical, so experiment with
the locations of the electronic components and electrical wiring of the device. Al-
though a mini breadboard is shown in the Fritzing diagram, the MakerShield pro-
toboard provides a compact way to wire the device.

144 Make: Basic Arduino Projects

Figure 17-2. The Amazing Pushbutton Fritzing diagram

Tech Note
The clicking sound made when pressing the pushbutton switch
provides audible feedback of closing electrical contacts.

Chapter 17: The Amazing Pushbutton (with Processing) 145

Upload the Amazing Pushbutton
Sketch
With the Amazing Pushbutton built, it’s time to upload the sketch. Example 17-1
sends digital information to the Arduino IDE (integrated development environment)
Serial Monitor and turns the onboard LED on and off with each press of the push-
button switch. Here are the steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 17-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Example 17-1. The Amazing Pushbutton sketch

/*
* The Amazing Pushbutton
*
* Reads a digital input from a pushbutton switch and sends the letter
* L or H to the Serial Monitor.
*
*
*/

// variables for input pin and control LED
 int digitalInput = 7;
 int LEDpin = 13;

// variable to store the value
 int value = 0;

void setup(){

// declaration pin modes
 pinMode(digitalInput, INPUT);
 pinMode(LEDpin, OUTPUT);

// begin sending over serial port
 Serial.begin(9600);
}

void loop(){
// read the value on digital input
 value = digitalRead(digitalInput);

// write this value to the control LED pin
digitalWrite(LEDpin, value);

// if value is high then send the letter 'H'; otherwise, send 'L' for low
if (value) Serial.print('H');

146 Make: Basic Arduino Projects

 else
 Serial.print('L');

 // wait a bit to not overload the port
 delay(10);
}

Once the Amazing Pushbutton sketch has been uploaded to the Arduino, the Serial
Monitor will display “L” repeatedly in a row, as shown in Figure 17-3. Press the push-
button switch, and the Serial Monitor displays “H” repeatedly in a row (see
Figure 17-4).

Figure 17-3. L’s being displayed on the Arduino Serial Monitor

Chapter 17: The Amazing Pushbutton (with Processing) 147

Figure 17-4. H’s being displayed on the Arduino Serial Monitor

Download and Install Processing Notes
Before building this awesome visual Arduino Microcontroller project, you have to
install the Processing programming language on your computer. Here are the in-
stallation instructions:

1. Go to the Processing download web page.

2. Select the software that meets your operating system’s requirements.

3. Once the Processing software has been downloaded to your hard drive, follow
the prompts to complete the installation process.

After installing the Processing programming language onto your computer, you’re
now ready to build the visualization software for the Amazing Pushbutton device!

Let’s Visualize Digital Data with
Processing
The characters “L” and “H” are an interesting way to represent the information you
get when the pushbutton turns on and off. But if we really want to see the “magic”
of the pushbutton, we’ll need to use a graphical software language called
Processing. Processing software allows digital information (actually, just about any
kind of information) to be changed into computer graphics quite easily.

148 Make: Basic Arduino Projects

With the Arduino attached to your computer, the state of the pushbutton, repre-
sented by L’s and H’s, can be changed to a colorful scale, showing increasing and
decreasing numbers. The pa_Pushbutton Processing sketch displays an interactive
scale on your computer screen, as shown in Figure 17-5.

Figure 17-5. We start with a very simple background scale created in Processing

Tech Note
Watch the online PBS Off Book episode titled “The Art of Data
Visualization”.

Example 17-2 shows the pa_Pushbutton Processing sketch for the Amazing
Pushbutton.

Example 17-2. The pa_Pushbutton Processing sketch

/*
* pa_PushButton
*
* Reads the values which represent the state of a pushbutton
* from the serial port and draws increasing/decreasing horizontal lines.

Chapter 17: The Amazing Pushbutton (with Processing) 149

*
*
*/

// importing the processing serial class
import processing.serial.*;

// the display item draws background and grid
 DisplayItems di;

// definition of window size and framerate
 int xWidth = 512;
 int yHeight = 512;
 int fr = 24;

// attributes of the display
 boolean bck = true;
 boolean grid = true;
 boolean g_vert = false;
 boolean g_horiz = true;
 boolean g_values = true;
 boolean output = false;

// variables for serial connection, portname, and baudrate have to be set
 Serial port;
 int baudrate = 9600;
 int value = 0;

// variables to draw graphics
 int actVal = 0;
 int num = 6;
 float valBuf[] = new float[num];
 int i;

// lets user control DisplayItems properties and value output in console
void keyPressed(){
 if (key == 'b' || key == 'B') bck=!bck; // background black/white
 if (key == 'g' || key == 'G') grid=!grid; // grid on/off
 if (key == 'v' || key == 'V') g_values=!g_values; // grid values on/off
 if (key == 'o' || key == 'O') output=!output; // turns value output on/off
}

void setup(){
 // set size and framerate
 size(xWidth, yHeight); frameRate(fr);

 // establish serial port connection
 // The "2" corresponds to the 3rd port (counting from 0) on the Serial
 // Port list dropdown. You might need to change the 2 to something else.
 String portname =Serial.list()[2];
 port = new Serial(this, portname, baudrate);
 println(port);

 // create DisplayItems object
 di = new DisplayItems();

150 Make: Basic Arduino Projects

 // clear value buffer
 for(i=0; i < num; i++) {
 valBuf[0] = 0;
 }

}

void drawPushButtonState(){
 // read through the value buffer
 // and shift the values to the left
 for(i=1; i < num; i++) {
 valBuf[i-1] = valBuf[i];
 }
 // add new values to the end of the array
 valBuf[num-1] = actVal;
 noStroke();
 // reads through the value buffer and draws lines
 for(int i=0; i < num; i=i+2) {
 fill(int((valBuf[i]*255)/height), int((valBuf[i]*255)/height) , 255);
 rect(0, height-valBuf[i], width, 3);
 fill(int((valBuf[i+1]*255)/height), 255, 0);
 rect(0, height-valBuf[i+1], width, 3);
 }
 // display value
 fill(((bck) ? 185 : 75));
 text(""+(actVal), 96, height-actVal);
}

void serialEvent(int serial){
 // if serial event is 'H' actVal is increased
 if(serial=='H') {
 actVal = (actVal < height - (height/16)) ?
 (actVal + int(actVal/(height/2))+1) :
 (actVal = height - (height/(height/2)));

 if (output)
 println("Value read from serial port is 'H' - actualValue is now "
 + actVal);
 } else {
 // if serial event is 'L' actVal is decreased
 actVal = (actVal > 1) ?
 (actVal = actVal - int(actVal/64)-1) :
 (actVal=0);
 if (output)
 println("Value read from serial port is 'L' - actualValue is now "
 + actVal);
 }
}

void draw(){
 // listen to serial port and trigger serial event
 while(port.available() > 0){
 value = port.read();
 serialEvent(value);

Chapter 17: The Amazing Pushbutton (with Processing) 151

 }
 // draw background, then PushButtonState and
 // finally rest of DisplayItems
 di.drawBack();
 drawPushButtonState();
 di.drawItems();
}

Next, we need to use the DisplayItems sketch to display the interactions with the
Arduino on your screen. To do this, you need to open a new tab in the Processing
IDE for the DisplayItems sketch. Enter Example 17-3 into the new tab in the Pro-
cessing IDE text editor.

Example 17-3. The DisplayItems Processing sketch

/*
* DisplayItems
*
* This class draws background color, grid and value scale
* according to the boolean variables in the pa_file.
*
* This file is part of the Arduino meets Processing Project.
* For more information visit http://www.arduino.cc.
*
* created 2005 by Melvin Ochsmann for Malmo University
*
*/

class DisplayItems{

// variables of DisplayItems object
PFont font;
int gridsize;
int fontsize = 10;
String fontname = "Monaco-14.vlw";
String empty="";
int i;

// constructor sets font and fontsize
DisplayItems(){
 font = loadFont(fontname);
 gridsize = (width/2)/16+(height/2)/16;
 if(gridsize > 20) fontsize = 14;
 if(gridsize > 48) fontsize = 22;
 textFont(font, fontsize);
}

// draws background
void drawBack(){
 background((bck) ? (0) : (255));
}

// draws grid and value scale
void drawItems(){

152 Make: Basic Arduino Projects

The Amazing Pushbutton Easter Eggs!
In addition to creating colorful lines and changing numbers, you can change the
look of the scale using the following keys:

• b/B: toggles background black/white

• g/G: toggles grid on/off

• v/V: toggles grid values on/off

• o/O: turns value output on/off

See if you can find additional eggs hidden in the Processing sketch. Happy Hacking!

 if(grid){ stroke((bck) ? (200) : (64));
 fill((bck) ? (232) : (32));

 // vertical lines
 if(g_vert){
 for (i=0; i < width; i+=gridsize){
 line(i, 0, i, height);
 textAlign(LEFT);
 if (g_values &&
 i%(2*gridsize)==0 &&
 i < (width-(width/10)))
 text(empty+i, (i+fontsize/4), 0+fontsize);
 }}

 // horizontal lines
 if(g_horiz){
 for (int i=0; i < height; i+=gridsize){
 line(0, i, width, i);
 textAlign(LEFT);
 if (g_values &&
 i%(2*gridsize)==0)
 text(empty+(height-i), 0+(fontsize/4), i-(fontsize/4));
 }}
 }
 }
}// end class DisplayItems

After typing the sketch, click the play button to obtain the image shown in
Figure 17-5. Press the Arduino’s pushbutton to watch the numbers increase and the
color bar (horizontal lines) move up the scale, as shown in Figure 17-6.

Chapter 17: The Amazing Pushbutton (with Processing) 153

Figure 17-6. The Amazing Pushbutton in action

Tech Note
For additional information about processing, see Casey Reas and
Ben Fry’s Getting Started with Processing (Maker Media, 2010).

The block diagram in Figure 17-7 shows the electronic component blocks and the
data flow for the Amazing Pushbutton. A Fritzing electronic circuit schematic dia-
gram of the Amazing Pushbutton is shown in Figure 17-8.

154 Make: Basic Arduino Projects

Figure 17-7. The Amazing Pushbutton block diagram

Troubleshooting Tips for Processing
As in all Maker projects, a bug can occasionally creep in. Processing is an awesome
software package for developing cool Arduino microcontroller projects, but it can
be challenging to use. Here are a few troubleshooting tips for the most common
problems that can occur:

• Make sure the Arduino microcontroller is communicating with the Processing
software through USB connection. If the Arduino is not attached to the Pro-
cessing software, it may cause communication errors.

• Make sure the Amazing Pushbutton sketch is running on Arduino before start-
ing the Processing sketch. If the Processing software is unable to obtain data
from the Arduino microcontroller (because it wasn’t running), it will generate
an “unrecognized device error.”

• Make sure text for both the Arduino and Processing sketches is typed correctly
as shown in the software listings. Most of the software bugs are caused by
syntax or incorrectly typed code for both programming languages.

Following these three guidelines should minimize your frustration when it comes
to debugging the Amazing Pushbutton device project build.

Chapter 17: The Amazing Pushbutton (with Processing) 155

Figure 17-8. The Amazing Pushbutton Fritzing circuit schematic diagram

Something to Think About
How can the letters “L” and “H” in Figure 17-3 and Figure 17-4 be replaced with the
numbers “0” and “1”?

156 Make: Basic Arduino Projects

Processing is an awesome programming language that creates graphics and pic-
tures that you can move in fun ways across the computer screen. Do you remember
the tilt switch from Chapter 3? It was an electrical device capable of controlling
electronic devices, based on its orientation or position. If you combine the Process-
ing language with a tilt switch, you can create computer graphics that move across
the screen when you make simple body gestures like waving a hand or raising and
lowering an arm! In this project, a white circle will move from side to side on your
computer screen as you rotate the tilt switch.

The electronic components to build this device are shown in the Parts List. The
Terrific Tilt Switch is shown in Figure 18-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 1KΩ resistor (brown, black, red stripes)

• S1: tilt switch

• USB cable

157

The Terrific Tilt
Switch (with
Processing) 18

Figure 18-1. The Terrific Tilt Switch

Let’s Build a Terrific Tilt Switch
The Terrific Tilt Switch, like the Amazing Pushbutton, requires a USB cable to send
digital information from the switch to the computer screen. As shown in
Figure 18-1, the device is quite simple to build: it requires just a 1KΩ fixed resistor
and a tilt switch. The two components are connected in series like the Amazing
Pushbutton device. Where the two components tie together, a jumper wire connects
between them and pin D7 of the Arduino microcontroller.

The Terrific Tilt Switch can be built using the Fritzing wiring diagram shown in
Figure 18-2. The placement of the parts is not critical, so have some fun placing the
components in different places. Although the Fritzing diagram shows a mini bread-
board, feel free to use the MakerShield protoboard if you want.

158 Make: Basic Arduino Projects

Figure 18-2. The Terrific Tilt Switch Fritzing wiring diagram

Upload the Terrific Tilt Switch Sketch
It’s time to upload the Arduino sketch for the Terrific Tilt Switch. Example 18-1 takes
information from the tilt switch and sends it to the Arduino IDE (integrated devel-
opment environment) Serial Monitor, displaying a series of the characters “H” and
“L” with each rotation of the tilt switch.

Did you notice that parts of the program look like the listing shown in Chapter 17?
That’s because the serial communication technique—the part of the code that lets
the Arduino talk with Processing—remains the same no matter what the Arduino

Chapter 18: The Terrific Tilt Switch (with Processing) 159

is using as input or how Processing displays the data. Here are the steps you’ll need
to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 18-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Terrific Tilt Switch sketch has been uploaded to the Arduino, the Serial
Monitor will display “L” repeatedly in a row, as shown in Figure 18-3. If you tilt the
switch, the Serial Monitor will display “H” repeatedly (see Figure 18-4).

Figure 18-3. L’s being displayed on the Arduino Serial Monitor

160 Make: Basic Arduino Projects

Figure 18-4. H’s being displayed on the Arduino Serial Monitor

Example 18-1. The Terrific Tilt Switch sketch

/*
* The Terrific Tilt Switch
*
* Reads a digital input from a tilt switch and sends a series of
* L's or H's to the Serial Monitor.
*
*
*/

// variables for input pin and control LED
 int digitalInput = 7;
 int LEDpin = 13;

// variable to store the value
 int value = 0;

void setup(){

// declaration pin modes
 pinMode(digitalInput, INPUT);
 pinMode(LEDpin, OUTPUT);

// begin sending over serial port
 Serial.begin(9600);
}

Chapter 18: The Terrific Tilt Switch (with Processing) 161

void loop(){
// read the value on digital input
 value = digitalRead(digitalInput);

// write this value to the control LED pin
digitalWrite(LEDpin, value);

// if value is high then send the letter 'H'; otherwise, send 'L' for low
if (value) Serial.print('H');
 else
 Serial.print('L');

 // wait a bit to not overload the port
 delay(10);
}

Let’s Visualize Digital Data with
Processing
With the Arduino attached to a Processing sketch running on your computer, the
digital information (L’s and H’s) from the Arduino can be changed to a horizontally
moving white circle based on the orientation of the tilt switch, as shown in
Figure 18-5 and Example 18-2.

Tech Note
Check out the Processing sketch listings for Arduino projects.

Example 18-2. The pa_Tilt Processing sketch

/*
* pa_Tilt
*
* Reads the values which represent the state of a Tilt switch
* from the serial port and draws white-filled circle with vertical lines.
* created 2005 by Melvin Ochsmann for Malmo University
*
*/

import processing.serial.*;

 DisplayItems di;

 int xWidth = 512;
 int yHeight = 512;
 int fr = 24;

 boolean bck = true;
 boolean grid = true;
 boolean g_vert = true;
 boolean g_horiz = false;

162 Make: Basic Arduino Projects

 boolean g_values = false;
 boolean output = true;

 Serial port;

 // The "2" corresponds to the 3rd port (counting from 0) on the Serial
 // Port list dropdown. You might need to change the 2 to something else.
 String portname = Serial.list()[2];
 int baudrate = 9600;
 int value = 0;
 boolean tilted = true;
 float a = 0;
 int speed = 5; // how many pixels that the circle will move per frame

void keyPressed(){

 if (key == 'b' || key == 'B') bck=!bck;
 if (key == 'g' || key == 'G') grid=!grid;
 if (key == 'v' || key == 'V') g_values=!g_values;
 if (key == 'o' || key == 'O') output=!output;
}

void setup(){

 size(xWidth, yHeight);
 frameRate(fr);

 di = new DisplayItems();

 port = new Serial(this, portname, baudrate);
 println(port);
}
// Method moves the circle from one side to another,
// keeping within the frame
void moveCircle(){

 if(tilted) {
 background(0);

 a = a + speed;
 if (a > (width-50)) {
 a = (width-50);
 }
 ellipse(a, (width/2), 100,100);

 }else{
 background(0);

 a = a - speed;
 if (a < 50) {
 a = 50;
 }
 ellipse(a, (width/2), 100,100);

 }

Chapter 18: The Terrific Tilt Switch (with Processing) 163

 }

void serialEvent(int serial){
 if(serial=='H') {
 tilted = true;
 if(output) println("High");

 }else {
 tilted = false;
 if(output) println("Low");
 }
}

void draw(){

 while(port.available() > 0){
 value = port.read();
 serialEvent(value);
 }

 di.drawBack();

 moveCircle();

 di.drawItems();

}

Figure 18-5. An interactive (moving) white-filled circle created in Processing

164 Make: Basic Arduino Projects

Tech Note
There are a couple of Easter eggs embedded in the pa_Tilt Process-
ing sketch that will allow you to change the appearance of the dis-
play. Good Hunting!

Next, open a new tab in the Processing IDE and add Example 18-3 . After typing the
sketch, click the play button. Your computer screen should show something very
similar to the image shown in Figure 18-5. Rotate the tilt switch and watch the white
circle move across your computer screen, as shown in Figure 18-6.

Example 18-3. The DisplayItems Processing sketch

/*
* DisplayItems
*
* This class draws background color, grid and value scale
* according to the boolean variables in the pa_file.
*
* This file is part of the Arduino meets Processing Project.
* For more information visit http://www.arduino.cc.
*
* created 2005 by Melvin Ochsmann for Malmo University
*
*/

class DisplayItems{

// variables of DisplayItems object
PFont font;
int gridsize;
int fontsize = 10;
String fontname = "Monaco-14.vlw";
String empty="";
int i;

// constructor sets font and fontsize
DisplayItems(){
 font = loadFont(fontname);
 gridsize = (width/2)/16+(height/2)/16;
 if(gridsize > 20) fontsize = 14;
 if(gridsize > 48) fontsize = 22;
 textFont(font, fontsize);
}

// draws background
void drawBack(){
 background((bck) ? (0) : (255));
}

// draws grid and value scale
void drawItems(){
 if(grid){ stroke((bck) ? (200) : (64));

Chapter 18: The Terrific Tilt Switch (with Processing) 165

 fill((bck) ? (232) : (32));

 // vertical lines
 if(g_vert){
 for (i=0; i < width; i+=gridsize){
 line(i, 0, i, height);
 textAlign(LEFT);
 if (g_values &&
 i%(2*gridsize)==0 &&
 i < (width-(width/10)))
 text(empty+i, (i+fontsize/4), 0+fontsize);
 }}

 // horizontal lines
 if(g_horiz){
 for (int i=0; i < height; i+=gridsize){
 line(0, i, width, i);
 textAlign(LEFT);
 if (g_values &&
 i%(2*gridsize)==0)
 text(empty+(height-i), 0+(fontsize/4), i-(fontsize/4));
 }}
 }
 }
}// end class Display

Figure 18-6. The Terrific Tilt Switch in action: the white circle has moved to the right side of the
screen

Tech Note
A class defines the look and operation of software objects.

166 Make: Basic Arduino Projects

The block diagram in Figure 18-7 shows the electronic component blocks and the
data flow for the Terrific Tilt Switch. A Fritzing electronic circuit schematic diagram
of the Terrific Tilt Switch is shown in Figure 18-8.

Figure 18-7. The Terrific Tilt Switch block diagram

Something to Think About
How can an external LED be wired to the MakerShield protoboard to visually rep-
resent the state of the tilt switch (just like the letters “L” and “H” do in the Serial
Monitor)?

Chapter 18: The Terrific Tilt Switch (with Processing) 167

Figure 18-8. The Terrific Tilt Switch Fritzing circuit schematic diagram

168 Make: Basic Arduino Projects

Would you like to build a rocket launching game using electronic components from
the Ultimate Microcontroller Pack? How cool would it be to launch the rockets from
your Maker bench or bedroom? Since launching real rockets is a bit beyond the
scope of this book, we’re going to use four pushbutton switches and the Arduino
microcontroller to build a virtual rocket launcher. The rest is done in Processing. The
electronic components to build this gadget are shown in the Parts List. The Rocket
Launcher is shown in Figure 19-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1-R5: 1KΩ resistors (brown, black, red stripes)

• S1-S4: pushbutton switches

• USB cable

• Full-size breadboard

169

The Rocket
Launching Game

(with Processing) 19

Figure 19-1. The Rocket Launcher

Let’s Build a Rocket Game
The Rocket Game, like the projects in Chapter 17 and Chapter 18, requires the use
of a USB cable to send digital information from four pushbutton switches to the
computer screen. As shown in Figure 19-1, the breadboard circuit is quite simple to
build and requires five 1KΩ fixed resistors and four pushbutton switches.

The basic digital circuit consists of a pushbutton switch and resistor wired in series.
This wiring connection is repeated three times for the remaining switches. These
switches are connected to pins D3 through D7 of the Arduino microcontroller.

The Rocket Game can be built using the Fritzing wiring diagram shown in
Figure 19-2. The placement of the parts is not critical, so experiment with the location
of the various electronic components, and the overall wiring of the device. One
challenge is to wire all of the electronic components using the awesome (but kind
of small) MakerShield protoboard. Can you fit it all on there?

170 Make: Basic Arduino Projects

Figure 19-2. The Rocket Launcher Fritzing wiring diagram

Tech Note
Processing language version 2.0 is available for download.

Upload the MultiDigital4 Sketch
After building the Rocket Game pushbutton circuit and checking for wiring errors,
it is time to upload the sketch. Example 19-1 sends digital information to the Arduino
IDE (integrated development environment) Serial Monitor, displaying the numbers
0, 1, 2, and 4 with each individual press of the four pushbutton switches. The serial
communication technique used in Chapter 17 and Chapter 18 remains the same for
the Arduino software to talk with the Processing programming language. Here are
the steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 19-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

The Serial Monitor will start to display numbers, as shown in Figure 19-3, each time
you press the pushbutton. Pushing various combinations of switches will show new

Chapter 19: The Rocket Launching Game (with Processing) 171

0, 1, 2, and … 4?
Why are the pushbuttons producing the numbers 0, 1, 2, and 4? What happened
to 3? The answer is that the buttons have been programmed to count in binary, a
number system that is based on the powers of 2. Zero is just that, zero. Two raised
to the 0th power equals 1. Two raised to the 1st power equals 2. Two raised to the
2nd power equals 4.

Why the preoccupation with powers of two? As computers have two primary states
(+5 volts and 0 volts), it’s easy to use those two states as the internal basis for
everything the computer does. When computers need to count, add, or divide, they
break the operation down into powers of two. In this project, instead of making the
Arduino do the conversion, we’ve just started out using the powers of two.

results. This information will be displayed in Processing, and will create an awesome
visual of rockets being launched on the screen.

Figure 19-3. Decimal equivalent numbers being displayed on the Arduino Serial Monitor; push-
button 3 has been pressed

172 Make: Basic Arduino Projects

Example 19-1. The MultiDigital4 sketch

/*
* MultiDigital4
*
* Reads 8 digital inputs and sends their values over the serial port.
* A byte variable is used to store the state of all eight pins. This byte
* is then sent over the serial port.
*
* modified ap_ReadDigital8 sketch by Melvin Oschmann
*
* 8 June 2013
* Don Wilcher
*
*/

// 8 variables for each pin
 int digitalInput_1 = 3;
 int digitalInput_2 = 4;
 int digitalInput_3 = 5;
 int digitalInput_4 = 6;
 int digitalInput_5 = 7;
 int digitalInput_6 = 8;
 int digitalInput_7 = 9;
 int digitalInput_8 = 10;

// 8 variables to store the values
 int value_1 = 0;
 int value_2 = 0;
 int value_3 = 0;
 int value_4 = 0;
 int value_5 = 0;
 int value_6 = 0;
 int value_7 = 0;
 int value_8 = 0;

// byte variable to send state of all pins over serial port
 int myByte = 0;

// control LED
 int controlLED = 13;

void setup(){

// set pin modes
 pinMode(digitalInput_1, INPUT); pinMode(digitalInput_2, INPUT);
 pinMode(digitalInput_3, INPUT); pinMode(digitalInput_4, INPUT);
 pinMode(digitalInput_5, INPUT); pinMode(digitalInput_6, INPUT);
 pinMode(digitalInput_7, INPUT); pinMode(digitalInput_8, INPUT);

 pinMode(controlLED, OUTPUT);

// begin sending out over the serial port
 Serial.begin(9600);

Chapter 19: The Rocket Launching Game (with Processing) 173

}

void loop(){

// set 'myByte' to zero
 myByte = 0;

// then read all the INPUTS and store values
// in the corresponding variables
 value_1 = digitalRead(digitalInput_1);
 value_2 = digitalRead(digitalInput_2);

 value_3 = digitalRead(digitalInput_3);
 value_4 = digitalRead(digitalInput_4);

 value_5 = digitalRead(digitalInput_5);
 value_6 = digitalRead(digitalInput_6);

 value_7 = digitalRead(digitalInput_7);
 value_8 = digitalRead(digitalInput_8);

/* check if values are high or low and 'add' each value to myByte
* what it actually does is this:
*
* 00 00 00 00 ('myByte set to zero')
* | 00 10 10 00 ('3 and 5 are 1')
* --------------
* 00 10 10 00 ('myByte after logical operation')
*
*/

 if (value_1) {
 myByte = myByte | 0;
 digitalWrite(controlLED, HIGH);
 } else digitalWrite(controlLED, LOW);

 if (value_2) { myByte = myByte | 1; }
 if (value_3) { myByte = myByte | 2; }
 if (value_4) { myByte = myByte | 4; }
 if (value_5) { myByte = myByte | 8; }
 if (value_6) { myByte = myByte | 16; }
 if (value_7) { myByte = myByte | 32; }
 if (value_8) { myByte = myByte | 64; }

// send myByte out over serial port and wait a bit to not overload the port
 Serial.print(myByte);
 delay(10);
}

The Rocket Launcher with Processing
The numbers from the MultiDigital4 sketch will be interpreted by Processing and
used to drive a cool graphics screen, with color numbers and text. The layout of the
Processing canvas is similar to the projects in Chapter 17 and Chapter 18 (with

174 Make: Basic Arduino Projects

obvious differences in text and animation). After uploading the Rocket Game sketch
to the Arduino, a jumbled blob of text and numbers along with a numbered grid
will be displayed on your computer screen, as shown in Figure 19-4. If you look
closely, you can see the word “rocket” repeated several times on the screen. Pressing
pushbutton 1 will show the rocket launcher in action, as the text and associated
number begin to rise on the numbered grid. Figure 19-5 shows an example of a
virtual rocket being launched into the sky! Releasing the pushbutton allows the
rocket to fall nicely back to earth.

Figure 19-4. A blob of text and numbers

Chapter 19: The Rocket Launching Game (with Processing) 175

Figure 19-5. Rocket 3 being launched into the sky

Another cool feature of the Rocket Game Processing sketch (Example 19-2) is the
Console Monitor located below the numbered grid. The Console Monitor displays
the binary status of the pushbuttons and launched rockets. As shown in
Figure 19-5, one of the pushbuttons has a binary status of 1, while the other three
pushbuttons show a binary status of 0. From that, can you deduce which pushbutton
has been pressed?

The Console Monitor can also be used as a sketch debugging tool when developing
graphics, animation, and Arduino applications.

176 Make: Basic Arduino Projects

Tech Note
The Processing programming language allows text-based informa-
tion to be displayed using a Console Monitor. The canvas is used to
display graphics and animation information.

Example 19-2. The Rocket Game Processing sketch

/*
* The Rocket Game
*
* Reads the values which represent the state of 4 switches
* from the serial port and draws a graphical representation.
* Sketch inspired by Melvin Ochsmann's Multiple8 Switches
*
* 05 June 2013
* modified by Don Wilcher
*/

// importing the processing serial class
import processing.serial.*;

// the display item draws the background and grid
 DisplayItems di;

// definition of window size and framerate
 int xWidth = 512;
 int yHeight = 512;
 int fr = 12;

// attributes of the display
 boolean bck = true;
 boolean grid = true;
 boolean g_vert = false;
 boolean g_horiz = true;
 boolean g_values = true;
 boolean output = true;

// variables for serial connection, port name, and baud rate have to be set
 Serial port;

 // establish serial port connection
 // The "2" corresponds to the 3rd port (counting from 0) on the Serial
 // Port list dropdown. You might need to change the 2 to something else.
 String portname =Serial.list()[2];
 int baudrate = 9600;
 int value = 0;

 // variables to draw graphics
 int i;

 // if you would like to change fonts, make sure the font file (which
 // can be created with Processing) is in the data directory
 String fontname2 = "Helvetica-Bold-96.vlw";

Chapter 19: The Rocket Launching Game (with Processing) 177

 int fontsize2 = 72; // change size of text on screen
 PFont font2;
 float valBuf[] = new float[8];
 int xpos, ypos;

// lets user control DisplayItems properties and value output in console
void keyPressed(){
 if (key == 'b' || key == 'B') bck=!bck; // background black/white
 if (key == 'g' || key == 'G') grid=!grid; // grid on/off
 if (key == 'v' || key == 'V') g_values=!g_values; // grid values on/off
 if (key == 'o' || key == 'O') output=!output; //turns value output on/off
}

void setup(){
 // set size and framerate
 size(xWidth, yHeight); frameRate(fr);
 // establish serial port connection
 port = new Serial(this, portname, baudrate);
 println(port);
 // create DisplayItems object
 di = new DisplayItems();
 // load second font for graphical representation and clear value buffer
 font2 = loadFont(fontname2);
 for(i = 0; i < valBuf.length; i++){
 valBuf[i] = (height/2);
 }
}

void drawFourSwitchesState(){
 textFont(font2, fontsize2);
 if (output) print("4Switches Statuses: ");

 // takes value, interprets it as a byte
 // and reads each bit
 for (i=0; i < 4 ; i++){

 if(output) print(value & 1);
 print("ROCKET!");

 // if a bit is 1, increase the corresponding value in value buffer
 // array by 1
 if ((value & 1) == 1){ // if 0, number drops when pushbutton is
 // pressed; if 1, number goes up when
 // pushbutton is pressed

 if(valBuf[i] > fontsize2) valBuf[i] -=1;
 // if a bit is 0, decrease corresponding value
 }else{
 if(valBuf[i] < height) valBuf[i] += 1;
 }

 if(output)
 print(".");

 // draw number for each value at its current height

178 Make: Basic Arduino Projects

 fill(((i%3==0) ? 255 : 0),
 ((i%3==1) ? 255 : 0) ,
 ((i%3==2) ? 255 : 0));
 text(("ROCKET"+(i+1)),
 (i*(width/12)) + (width/15),
 valBuf[i]); // prints "ROCKET" along with number
 value = value >> 1;

 } // end for loop
 if(output)
 println("");
}

void draw(){
 // listen to serial port and set value
 while(port.available() > 0){
 value = port.read();
 }
 // draw background, then four switches and finally rest of DisplayItems
 di.drawBack();
 drawFourSwitchesState();
 di.drawItems();
}

Next, the DisplayItems sketch is required for the interaction of the Rocket Game and
the computer graphics to be visible on your computer screen. Enter the DisplayItems
sketch shown in Example 19-3 into the Processing IDE text editor. Note that a second
tab needs to be inserted within the IDE for the DisplayItems sketch. After typing the
sketch, click the play button to obtain the image shown in Figure 19-4. Press a push-
button on the Arduino breadboard and watch the rocket move up your computer
screen, as shown in Figure 19-5.

Tech Note
There are a couple of Easter eggs embedded in the Rocket Game
Processing sketch that allow you to change the appearance of the
display. Also, the onboard LED turns on with one of the pushbuttons.
Good Hunting!

Example 19-3. The DisplayItems Processing sketch

/*
* DisplayItems
*
* This class draws background color, grid and value scale
* according to the boolean variables in the Rocket Launcher file.
*
* This file is part of the Arduino meets Processing Project.
* For more information visit http://www.arduino.cc.
*
* created 2005 by Melvin Ochsmann for Malmo University
*

Chapter 19: The Rocket Launching Game (with Processing) 179

*/

class DisplayItems{

// variables of DisplayItems object
PFont font;
int gridsize;
int fontsize = 10;
String fontname = "Monaco-14.vlw";
String empty="";
int i;

// constructor sets font and fontsize
DisplayItems(){
 font = loadFont(fontname);
 gridsize = (width/2)/16+(height/2)/16;
 if(gridsize > 20) fontsize = 14;
 if(gridsize > 48) fontsize = 22;
}

// draws background
void drawBack(){
 background((bck) ? (0) : (255));
}

// draws grid and value scale
void drawItems(){
 textFont(font, fontsize);

 if(grid){ stroke((bck) ? (200) : (64));
 fill((bck) ? (232) : (32));

 // vertical lines
 if(g_vert){
 for (i=0; i < width; i+=gridsize){
 line(i, 0, i, height);
 textAlign(LEFT);
 if (g_values &&
 i%(2*gridsize)==0
 && i < (width-(width/10)))
 text(empty+i, (i+fontsize/4), 0+fontsize);
 }}

 // horizontal lines
 if(g_horiz){
 for (int i=0; i < height; i+=gridsize){
 line(0, i, width, i);
 textAlign(LEFT);
 if (g_values &&
 i%(2*gridsize)==0)
 text(empty+(height-i), 0+(fontsize/4), i-(fontsize/4));
 }}
 }
 }
}// end class Display

180 Make: Basic Arduino Projects

Tech Note
The size of the letters can be changed with the fontsize variable.

The block diagram in Figure 19-6 shows the electronic component blocks and the
data flow for the Rocket Game. A Fritzing electronic circuit schematic diagram of
the gadget is shown in Figure 19-7. Electronic circuit schematic diagrams are used
by electrical/electronic engineers to design and build cool interactive electronic
products for society.

Figure 19-6. The Rocket Game block diagram

Something to Think About
How can the word “ROCKET” be replaced with “FIRE” within the Rocket Game Pro-
cessing sketch?

Chapter 19: The Rocket Launching Game (with Processing) 181

Figure 19-7. The Rocket Game Fritzing circuit schematic diagram

182 Make: Basic Arduino Projects

Here’s an awesome project that allows you to quickly check the temperature of the
environment using a few electronic components from the Ultimate Microcontroller
Pack. This temperature indicator uses a small electronic sensor called a thermistor,
which changes its resistance—the way electricity flows through it—depending on
the temperature. The electronic components to build this gadget are shown in the
Parts List. The Temperature Indicator is shown in Figure 20-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: thermistor (green or black candy drop electronic component)

• R2: 10KΩ resistor (brown, black, orange stripes)

• USB cable

• LED1: red LED

183

Temperature
Indicator (with

Processing) 20

Figure 20-1. The Temperature Indicator

Let’s Build a Temperature Indicator
As shown in Figure 20-1, the breadboard analog circuit is quite simple to build, and
requires only a thermistor and a 10KΩ fixed resistor wired in series. Where the two
components are tied together, a jumper wire connects between them and pin A3
of the Arduino microcontroller.

The Temperature Indicator can be built using the Fritzing wiring diagram shown in
Figure 20-2. Since there are only two electronic components, you have plenty of
room for electrical wiring and breadboard placement of the components. Although
the Fritzing wiring diagram shows a small breadboard, you can alternatively use the
MakerShield protoboard to build the Temperature Indicator.

184 Make: Basic Arduino Projects

Figure 20-2. The Temperature Indicator Fritzing wiring diagram

Tech Note
A thermistor is a special variable resistor that changes its resistance
based on temperature.

Upload the Temperature Indicator
Sketch
After building the Temperature Indicator circuit and checking for wiring errors, it is
time to upload the sketch. Example 20-1 sends analog information to the Arduino
IDE (integrated development environment) Serial Monitor, and displays a series of

Chapter 20: Temperature Indicator (with Processing) 185

numbers based on the thermistor’s change in resistance. It uses the same serial
communication technique used in Chapters 17, 18, and 19 to talk with the Process-
ing programming language. Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 20-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

With the Temperature Indicator sketch uploaded to the Arduino microcontroller,
the Serial Monitor will display decimal numbers as shown in Figure 20-3. If you touch
the thermistor—making it hotter with your own body heat—the Serial Monitor
numbers will change. Also, if you add an external LED between pins D13 and GND,
you’ll have a visual indicator of when the thermistor’s temperature has exceeded
the threshold value programmed in the sketch. Figure 20-4 shows the Temperature
Indicator’s LED in operation.The Temperature Indicator is not an actual electronic
thermometer but a device that can sense a certain heat level and respond to it by
turning on an LED. The temperature units of Fahrenheit or Celsius are not displayed,
thereby removing the concern about the thermistor’s temperature resolution so the
focus is on the device’s actual operating performance.

Figure 20-3. Decimal numbers being displayed on the Arduino Serial Monitor

186 Make: Basic Arduino Projects

Figure 20-4. Temperature Indicator detecting heat from a notebook computer.

Tech Note
The thermistor is used in electronic thermometers to measure
temperature.

Example 20-1. The Temperature Indicator sketch

/*
* Temperature_Indicator
*
* Reads an analog input from the input pin and sends the value
* followed by a line break over the serial port. Data can be viewed
* using the Serial Monitor.
*
* This file is part of the Arduino meets Processing Project:
* For more information visit http://www.arduino.cc.
*
* created 2005 ap_ReadAnalog by Melvin Ochsmann for Malmo University
*
* 10 June 2013
* modified by Don Wilcher
*
*/

// variables for input pin and control LED

Chapter 20: Temperature Indicator (with Processing) 187

 int analogInput = 3;
 int LEDpin = 13;

// variable to store the value
 int value = 0;

// a threshold to decide when the LED turns on
 int threshold = 800;

void setup(){

// declaration of pin modes
 pinMode(analogInput, INPUT);
 pinMode(LEDpin, OUTPUT);

// begin sending over serial port
 Serial.begin(9600);
}

void loop(){
// read the value on analog input
 value = analogRead(analogInput);

// if value greater than threshold turn on LED
if (value < threshold) digitalWrite(LEDpin, HIGH);
else digitalWrite(LEDpin, LOW);

// print out value over the serial port
 Serial.println(value);

// and a signal that serves as separator between two values
 Serial.write(10);

// wait for a bit to not overload the port
 delay(100);
}

The Negative Temperature Coefficient
(NTC) Sensor with Processing
When we connect the Temperature Indicator sketch to Processing, the thermistor
temperature data from the sketch will be displayed in the Processing IDE Console
Monitor, as well as on the main screen of the computer. The layout of this Processing
canvas is simple. The graphics consist of two rectangular boxes with fluttering hor-
izontal lines. The fluttering lines represent the thermistor’s temperature, received
from the Arduino microcontroller. An example of the fluttering lines and Console
Monitor thermistor data is shown in Figure 20-5 and Figure 20-6. The NTC Sensor
sketch is shown in Example 20-2. After uploading the NTC Sensor sketch to the
Arduino microcontroller, two rectangular boxes with fluttering horizontal lines rep-
resenting thermistor data will be visible on the computer screen.

188 Make: Basic Arduino Projects

Figure 20-5. Fluttering horizontal data lines

Figure 20-6. Thermistor data displayed on the Processing Console Monitor

Chapter 20: Temperature Indicator (with Processing) 189

Tech Note
The thermistor information being transmitted from the Arduino
microcontroller through the USB cable and received by the Process-
ing Console Monitor is a good example of data communications.

Example 20-2. The NTC Sensor Processing sketch

import processing.serial.*;

Serial port; // the Serial Port object is created
float val; // variable used to receive thermistor data from Arduino

void setup() {
 size(440, 220); // size of canvas
 frameRate(30); // how fast the horizontal lines will flutter
 smooth(); // reduce jittering of the fluttering horizontal lines

 // The "2" corresponds to the 3rd port (counting from 0) on the Serial
 // Port list dropdown. You might need to change the 2 to something else.
 String portname = Serial.list()[2];
 port = new Serial(this, portname, 9600); // baud rate for COM port
 background(0); // create a black canvas

}

void draw() {
 if (port.available() > 0){ // check for available data on COM port
 val= port.read(); // store COM port data in variable "val"
 print(val); // print COM data on Console Monitor
 // val = map(val, 0, 255, 0, height);
 // float targetVal = val;
 // easedVal += (targetVal - easedVal)* easing;

 }

 rect(40, val, 360, 20); // display data has a fluttering horizontal
 // line inside a rectangle

}

Tech Note
You can play with the horizontal line display rate by modifying the
frameRate(30) processing instruction.

190 Make: Basic Arduino Projects

The block diagram in Figure 20-7 shows the electronic component blocks and the
data flow for the Temperature Indicator. A Fritzing electronic circuit schematic dia-
gram of the Temperature Indicator is shown in Figure 20-8. Electrical/electronic
engineers use circuit schematic diagrams to design, build, and test cool interactive
electronic products for society.

Figure 20-7. The Temperature Indicator block diagram

Something to Think About
How can a second LED be wired to the Arduino microcontroller to display when the
temperature falls below a certain threshold?

Chapter 20: Temperature Indicator (with Processing) 191

Figure 20-8. The Temperature Indicator Fritzing circuit schematic diagram

192 Make: Basic Arduino Projects

An Electrical Motor Tester

Chapter 3 has an awesome project that changes a servo motor’s angle of rotation
based on the orientation of a tilt sensor. In that project, rotating the tilt sensor to
either 0° or 90° positions will make the servo motor’s shaft turn CW (clockwise) or
CCW (counterclockwise). Also, the tilt sensor, along with the servo motor, can be
used to build a simple animatronic controller for robotic puppets.

In this chapter, you can build a cool electrical tester to quickly test the limits of the
Ultimate Microcontroller Pack servo motors, or those you may obtain outside the
kit, like from a local Makerspace’s electrical/mechanical parts bin.

The electronic components to build this electrical tester are shown in the Parts
List. The Sweeping Servo Motor Tester is shown in Figure 21-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• M1: DC servo motor

193

Sweeping Servo 21

Figure 21-1. The Sweeping Servo Motor Tester

Let’s Build a Servo Motor Tester
The Servo Motor Tester is quite simple to build and only requires the three compo-
nents shown in the Parts List. With this tester, you will be able to quickly check any
of the small voltage-based servo motors you may have in your junk box. The Servo
Motor Tester can be built using the Fritzing wiring diagram shown in Figure 21-2.
Since the major component for this project is the servo motor, placement of the
parts on the breadboard is not critical. You have lots of room to explore different
ways to place the servo motor when laying out the circuit on the breadboard.

In addition, by inserting the appropriate size solid wires into the three-pin female
connector, you can easily make a male connecting component. This homebrew male
connector makes it easy to insert the servo motor into a breadboard. (For further
reference on building a servo motor male connector, see Figure 3-4 in Chapter 3.)
Although the Fritzing wiring diagram shows a small breadboard, you can also use
the MakerShield protoboard to build the Servo Motor Tester.

194 Make: Basic Arduino Projects

Figure 21-2. The Servo Motor Tester Fritzing wiring diagram

Tech Note
The color-coded wires for the Ultimate Microcontroller Pack are yel-
low (to D2), red (to +5V), and brown (to GND).

Upload the Sweeping Sketch
With the Servo Motor Tester built on the breadboard, now it’s time to upload an
Arduino sketch. Before uploading the sketch, check for wiring errors and make sure
the servo motor connector is correctly attached to the breadboard. Example 21-1

Chapter 21: Sweeping Servo 195

sends a series of electrical pulses from the Arduino microcontroller’s digital pin D9
to the servo motor. Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 21-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

With the Sweeping sketch uploaded to the Arduino microcontroller, the servo motor
will begin rotating CW and CCW continuously. Figure 21-3 shows a servo motor
being tested by the Sweeping sketch.

Figure 21-3. A servo motor being tested using the Sweeping sketch

Tech Note
The size of the pulse width determines the servo motor’s angle of
rotation.

Example 21-1. The Sweeping sketch

#include <Servo.h>

Servo myservo; // create servo object to control a servo
 // a maximum of eight servo objects can be created

int pos = 0; // variable to store the servo position

void setup()
{

 myservo.attach(2); // attaches the servo on pin 2 to the servo object
}

196 Make: Basic Arduino Projects

void loop()
{
 for(pos = 0; pos < 170; pos += 1) // goes from 0 degrees to 170 degrees
 { // in steps of 1 degree
 myservo.write(pos); // move to position in variable 'pos'
 delay(15); // waits 15ms to reach the position
 }
 for(pos = 170; pos>=1; pos-=1) // goes from 170 degrees to 0 degrees
 {
 myservo.write(pos); // move to position in variable 'pos'
 delay(15); // waits 15ms to reach the position
 }
}

One final point to make about the Sweeping sketch: with some servo motors, a 180°
pulse may cause the gears to grind. Therefore, experiment (gently!) with this value
to learn the maximum CW and CCW rotation of your particular servo, without grind-
ing the servo motor’s gears.

Tech Note
In Chapter 5 of Make: Electronics, there is a nice reference page de-
scribing various DC motors, including the servo motor.

The block diagram in Figure 21-4 shows the electronic component blocks and the
data flow. The equivalent Fritzing electronic circuit schematic diagram of the Servo
Motor Tester is shown in Figure 21-5.

Figure 21-4. The Servo Motor Tester block diagram

Chapter 21: Sweeping Servo 197

Figure 21-5. The Servo Motor Tester Fritzing circuit schematic diagram

Something to Think About
How can an LED be wired to the Arduino microcontroller to light up when the servo
motor is at 180°?

198 Make: Basic Arduino Projects

Temperature Sensing

Did you know that you can tell the temperature from crickets? Crickets chirp faster
when the temperature is warmer, and they chirp more slowly when the air is cooler.
Let’s use our Arduino microcontroller skills and our knowledge about thermistors
(Chapter 21) to build an electronic cricket. It won’t look much like an insect, but the
Arduino cricket will respond to temperature much the same way a real cricket does
—its chirp will speed up as the air temperature warms up, and slow down as the air
gets cooler. And unlike real crickets (which stop chirping when the temperature gets
below about 60°F), your Arduino will continue to chirp almost to freezing!

The components to build this electronic cricket are shown in the Parts List. The
Electronic Cricket is shown in Figure 22-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: negative temperature coefficient (NTC) thermistor (green or black candy
drop; part number 503)

• R2: 10KΩ resistor (brown, black, orange stripes)

• R3: 1KΩ resistor (brown, black, red stripes)

• R4: 10K potentiometer

• SPKR1: 8Ω mini speaker

199

Electronic Cricket 22

Figure 22-1. The assembled Electronic Cricket

Let’s Build an Electronic Cricket
The Electronic Cricket is a creative, interactive device that produces electronic
sounds using an Arduino microcontroller, a temperature sensor, two fixed resistors,
a potentiometer, and a mini speaker. The values for these electronic components
are in the Parts List. Follow the Fritzing wiring diagram shown in Figure 22-2 to
construct the cricket.

When the project is built, you can immediately test the cricket by holding the tem-
perature sensor between your fingers. The pitch of the sound coming out of the
speaker, as well as the frequency of the chirping, will increase as the temperature
rises. You can control the volume of the chirping with the potentiometer.

200 Make: Basic Arduino Projects

Figure 22-2. Electronic Cricket Fritzing wiring diagram.

Tech Note
To convert cricket chirps to degrees Fahrenheit, you simply count
the number of chirps in 14 seconds, then add a constant of 40 to get
the temperature.

Example: 40 chirps per 14 seconds + 40 = 80°F

Upload the Electronic Cricket Sketch
With the Electronic Cricket wired on the breadboard, now it’s time to upload the
Arduino sketch. Before uploading the sketch, check for wiring errors on the bread-
board. Example 22-1 sends a series of electrical pulses from the digital pin D9 on
the Arduino microcontroller to the 8Ω mini speaker. Here are the steps you’ll need
to follow:

Chapter 22: Electronic Cricket 201

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 22-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

The Arduino microcontroller is now programmed with the Electronic Cricket sketch.
If everything is wired correctly, the 8Ω mini speaker should start to chirp somewhat
like a real cricket. Touch the temperature sensor with your finger, and the chirping
should speed up and get higher in pitch. Remove your finger from the temperature
sensor and the chirping will decrease in speed and pitch.

The speed of the chirping per minute is approximately equal to the degrees in Fah-
renheit. If you hear 80 chirps in one minute, the temperature is approximately 80°
F. (If you don’t want to wait a whole minute, simply count the chirps for 15 seconds
and multiply by 4.)

Tech Note
For additional information about the tone() instruction, go to the
reference website for the Arduino.

Example 22-1. Electronic Cricket sketch

/*
 Electronic Cricket

 Plays a pitch that changes based on a changing analog (temperature) input

 */

int expectedMax = 859;
int expectedMin = 330;
float fahrenheit = 0.0;

void setup() {
 // initialize serial communications (for debugging only):
 Serial.begin(9600);
}

void loop() {
 // read the sensor:
 int sensorReading = analogRead(A0);

 // print the sensor reading so you know its range
 Serial.println(sensorReading);

 // map the sensor analog input range
 // to the output pitch range (10 - 100Hz)
 // change the minimum and maximum input numbers below
 // depending on the range your sensor's giving:

202 Make: Basic Arduino Projects

 int thisPitch = map(sensorReading, expectedMin, expectedMax, 10, 100);
 int thisTemperature =
 map(sensorReading, expectedMin, expectedMax, -10, 40);

 fahrenheit = (5.0/9.0) * (thisTemperature + 32);

 Serial.println(fahrenheit);

 // play the pitch twice, to imitate a cricket:
 tone(9, thisPitch, 10);

 // the delay is proportional to the temperature
 // (faster chirps mean higher temperatures)
 delay(60000/(fahrenheit * 1000));

 tone(9, thisPitch, 10);

 delay(1); // delay in between reads for stability
}

As shown in the sketch, the Electronic Cricket’s pitch range can create fun electronic
sounds easily by changing the first two numbers in the map() instruction. Play with
the pitch to see how many cool electronic sounds you can create from your Elec-
tronic Cricket!

Tech Note
To understand how the potentiometer operates the mini speaker,
here’s a cool experiment you can try with the Ultimate Microcon-
troller Pack.

The block diagram in Figure 22-3 shows the electronic component blocks and the
data flow for the Electronic Cricket. Also, the equivalent Fritzing electronic circuit
schematic diagram of the Electonic Cricket is shown in Figure 22-4. Circuit schematic
diagrams are used by electrical/electronic engineers and technicians to design,
build, and test cool interactive electronic products for games, testing equipment,
robots, and automobiles.

Figure 22-3. The Electronic Cricket block diagram

Chapter 22: Electronic Cricket 203

Figure 22-4. The Electronic Cricket Fritzing circuit schematic diagram

Something to Think About
How can the mini speaker be replaced with an LED for a visual pitch indicator?

204 Make: Basic Arduino Projects

Temperature Sensing (Part 2)

Stage lighting provides a cool effect for concerts and plays. The various color lenses
placed on the lights are used to complement the mood of the performers on stage.
How awesome would it be to have an electronic gadget that can project colors on
a wall without using special lenses and light bulbs? You’ll be able to perform a
magnificent lighting show for your family, friends, and local Makerspace members
anywhere at any time. Also, the pocket lighting device can be operated by touch
instead of pushbutton switches. With electronic parts obtained from the Ultimate
Microcontroller Pack, you can build your own Pocket Stage Light. The electronic
components to build the Pocket Stage Light are shown in the Parts List. The assem-
bled Pocket Stage Light is shown in Figure 23-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: negative temperature coefficient (NTC) thermistor (green or black candy
drop; part number 503)

• R2: 10KΩ resistor (brown, black, orange stripes)

• R3: 1KΩ resistor (brown, black, red stripes)

• R4: 330Ω resistor (orange, orange, brown stripes)

• LED1: RGB LED

205

A Pocket Stage Light 23

Figure 23-1. The assembled Pocket Stage Light

Let’s Build a Pocket Stage Light
Operating an electronic gadget with sensors is called physical computing. Other
examples of physical computing devices are Microsoft’s Kinect and smartphone
touch screens. The Pocket Stage Light is operated by warm temperature. The tem-
perature value is changed to an electrical voltage and used by the Arduino micro-
controller to turn on an RGB LED. Control over the color lighting sequence of red,
green, and blue is provided by an Arduino sketch.

Use the Fritzing wiring diagram shown in Figure 23-2 to build the Pocket Stage Light.
Touching the thermistor with your finger will signal the Arduino microcontroller to
turn on the red, green, and blue colors of the LED in sequence. After you release the
thermistor, the color LEDs will continue to sequence for approximately 10 seconds.

206 Make: Basic Arduino Projects

Figure 23-2. Pocket Stage Light Fritzing wiring diagram

Before uploading the sketch in Example 23-1 to the Arduino, check and correct any
wiring errors on your breadboard using the Fritzing diagram shown in Figure 23-2.

Tech Note
With the right color mix, you can create a white light with an RGB
LED. Check out Wikipedia’s page on the RGB color model.

Chapter 23: A Pocket Stage Light 207

Upload the Pocket Stage Light Sketch
With the Pocket Stage Light wired on the breadboard, now it’s time to upload the
Arduino sketch. Example 23-1 turns on three Arduino microcontroller digital pins
(D9, D10, and D11) in sequence that operate the red, green, and blue portion of the
RGB LED. Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 23-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

The Arduino microcontroller is now programmed with the Pocket Stage Light
sketch. When the sketch starts running, the RGB LED is off. Touch the thermistor
with your finger, and the RGB LED will begin to sequence its red, green, and blue
colors. Releasing the sensor will allow the color sequencing to continue for approx-
imately one second. Figure 23-3 and Figure 23-4 show the operation of the Pocket
Stage Light.

Figure 23-3. Pocket Stage Light projecting a green light on a whiteboard

208 Make: Basic Arduino Projects

Figure 23-4. Pocket Stage Light projecting a blue light on a whiteboard

Example 23-1. Pocket Stage Light sketch

/*
 Pocket Stage Light
 The RGB LED will sequence in colors (blue, green, red) by use
 of a thermistor.

 15 August 2013
 by Don Wilcher

 */

int tsensorPin = A0; // select the input pin for the temperature sensor
int RPin = 11; // select the pin for the red LED
int GPin = 10; // select the pin for the green LED
int BPin = 9; // select the pin for the blue LED
int tsensorValue = 0; // to store the value from the temperature sensor

void setup() {
 // declare the LED pins as outputs:
 pinMode(RPin, OUTPUT);
 pinMode(GPin, OUTPUT);
 pinMode(BPin, OUTPUT);
 Serial.begin(9600);

Chapter 23: A Pocket Stage Light 209

}

void loop() {
 // read the value from the sensor:
 tsensorValue = analogRead(tsensorPin);
 Serial.println(tsensorValue);
 delay(100);
 if (tsensorValue > 190){
 // turn the blue LED on:
 digitalWrite(BPin, LOW);
 digitalWrite(RPin, HIGH);
 // delay blue LED for 5 seconds:
 delay(5000);
 // turn the green LED on:
 digitalWrite(BPin, HIGH);
 digitalWrite(GPin, LOW);
 // delay green LED for 5 seconds:
 delay(5000);
 // turn the red LED on:
 digitalWrite(GPin, HIGH);
 digitalWrite(RPin, LOW);
 //delay red LED for 5 seconds:
 delay(5000);
 }
 else{
 // turn blue, green, and red LEDs off:
 digitalWrite(BPin, HIGH);
 digitalWrite(GPin, HIGH);
 digitalWrite(RPin, HIGH);
 }
}

You can see the thermistor’s output on the Arduino’s Serial Monitor. Also, as dis-
cussed in Chapter 22, you can experiment with a 10KΩ thermistor to see a difference
in the RGB LEDs response. Observe the operation of the RGB LED closely to see a
different turn-on response based on the 10KΩ thermistor component. Last, change
the color sequence of the LEDs from the order listed within the sketch! Remember
to record your software and electrical design changes in a lab notebook.

Tech Note
The Serial Monitor is a tool used to display electrical data of all types
of sensors wired to the Arduino microcontroller.

The block diagram in Figure 23-5 shows the electronic component blocks and the
data flow for the Pocket Stage Light. Also, the equivalent Fritzing electronic circuit
schematic diagram of the portable lighting device is shown in Figure 23-6. Circuit
schematic diagrams allow electronic devices to be built quickly. Electrical/electronic
engineers and technicians use them to design, build, and test cool interactive elec-
tronic products for games, testing equipment, robots, and automobiles.

210 Make: Basic Arduino Projects

Figure 23-5. The Pocket Stage Light block diagram

Figure 23-6. The Pocket Stage Light Fritzing circuit schematic diagram

Something to Think About
Does a 10KΩ thermistor have a faster RGB LED turn-on response compared to the
Ultimate Microcontroller Pack’s sensing component?

Chapter 23: A Pocket Stage Light 211

Serial Communications

In nearly all the cool video games you play, the graphics are complex and sophisti-
cated. The images seem real, and their movement is smooth and natural. The magic
behind these cool computer graphic images is just a dot of light called a pixel, short
for “picture element.” The game you’re playing calculates what the color value of
each of the pixels on your screen should be; together, these pixels are arranged to
create an image. This project is going to be just like taking one pixel from a monitor
and controlling its state using a computer and an Arduino microcontroller. The
electronic components to build the pixel project are shown in the Parts List. The
assembled Electronic Pixel is shown in Figure 24-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 330Ω resistor (orange, orange, brown stripes)

• S1: DPDT (double pole, double throw) switch

• LED1: RGB LED

213

Electronic Pixel 24

Figure 24-1. The assembled Electronic Pixel

Let’s Build an Electronic Pixel
In the case of the Electronic Pixel, the LED on and off commands are sent from the
Arduino’s Serial Monitor and converted into equivalent voltage pulses. These volt-
age pulses are sent through a USB cable attached between the computer and the
Electronic Pixel. Digital pin D9 of the Arduino microcontroller is used to turn on and
off the RGB LED.

The Electronic Pixel is built using a breadboard with the components wired to each
other, as shown in Figure 24-2. Although the Fritzing wiring diagram shows the
Electronic Pixel built on a breadboard, the MakerShield protoboard can be used as
well. Also, the Fritzing wiring diagram shows a single pole, double throw (SPDT)
switch instead of the double pole, double throw (DPDT) electrical component
shown in the Parts List. The remainder of the DPDT switch can be wired as shown
in Figure 24-2. Refer to Chapter 5 for additional instructions on how to set up the
DPDT switch for breadboarding.

214 Make: Basic Arduino Projects

Figure 24-2. The Electronic Pixel Fritzing wiring diagram

Chapter 24: Electronic Pixel 215

Tech Note
Remember from an earlier chapter that on and off voltage pulses
are known as binary data. The two numbers that represent binary
data are 1 and 0. The electrical voltage value for binary 1 is +5 volts
and 0 is equal to 0 volts.

Upload the Electronic Pixel Sketch
Before uploading Example 24-1 to the Arduino, check and correct any wiring errors
on your breadboard using the Fritzing diagram shown in Figure 24-2. With the Elec-
tronic Pixel wired on the breadboard, it is now time to upload the Arduino sketch.
Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 24-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

The Arduino microcontroller is now programmed with the Electronic Pixel sketch.
The RGB LED is turned on at this point. The green or red LED might be turned on
based on the DPDT switch position. As mentioned in the introduction, an electrical
switch is wired to the Arduino microcontroller’s digital pin to create a cool interactive
effect using the colors of the RGB LED. Slide the switch back and forth and watch
the RGB LED toggle between the colors red and green (see Figure 24-3 and
Figure 24-4).

Now, open the Arduino Serial Monitor and type the letter “L” into the text box. Press
Enter on your computer. The RGB LED is turned off. Type the letter “H” into the text
box and click the Serial Monitor “send” button. The RGB LED turns on. If the project
is not working properly, find any sketch errors and correct them. Upload the cor-
rected sketch to the Arduino microcontroller and retest the Electronic Pixel.

Example 24-1. The Electronic Pixel sketch

/*
 Electronic Pixel

 An example of using an Arduino microcontroller for serial communication to
 receive binary data from a computer. In this case, the Arduino boards
 turns on an RGB LED when it receives the 'H' character, and turns off
 the RGB LED when it receives the 'L' character. Also, an electrical
 switch can change the colors of the RGB LED between green and red.

 The on and off command data can be sent from the Arduino
 Serial Monitor.

 */

216 Make: Basic Arduino Projects

int ledPin = 9; // the pin that the RGB LED is attached to
int incomingByte; // a variable to read incoming serial data

void setup() {
 // initialize serial communication:
 Serial.begin(9600);
 // initialize the RGB LED pin as an output:
 pinMode(ledPin, OUTPUT);
}

void loop() {
 // see if there's incoming serial data:
 if (Serial.available() > 0) {
 // read the oldest byte in the serial buffer:
 incomingByte = Serial.read();
 // if it's a capital H, turn on the LED:
 if (incomingByte == 'H') {
 digitalWrite(ledPin, LOW);
 }
 // if it's an L, turn off the LED:
 if (incomingByte == 'L') {
 digitalWrite(ledPin, HIGH);
 }
 }
}

Figure 24-3. A very large red pixel projected onto a whiteboard

Chapter 24: Electronic Pixel 217

Figure 24-4. A green ghost projected onto a whiteboard

Tech Note
Any computer keyboard characters can be used to operate the RGB
LED. Look at Example 24-1 and replace the letters “H” and “L” with
the different keyboard characters.

The block diagram in Figure 24-5 shows the circuit component blocks and the data
flow for the Electronic Pixel. Also, the equivalent Fritzing electronic circuit schematic
diagram of the Electronic Pixel is shown in Figure 24-6.

Figure 24-5. The Electronic Pixel block diagram

218 Make: Basic Arduino Projects

Figure 24-6. The Electronic Pixel Fritzing circuit schematic diagram

Something to Think About
How can the switching sequence between the red, green, and blue LEDs be changed
to operate faster?

Chapter 24: Electronic Pixel 219

The “tick-tick-tick” of the metronome is the steady sound used to help musicians
play music at a regular beat. In 1815, Johann Maelzel, a German inventor and engi-
neer, made a swinging device for use as a tool for musicians to keep a steady tempo
as they play their music. The metronome is a mechanical gadget that uses an ad-
justable weight attached to a pendulum rod. As the pendulum rod swings back and
forth, the metronome makes a clicking sound. Today, Makers have made a variety
of electronic metronomes that use speakers or LEDs to imitate the click and swinging
motion of the mechanical pendulum. You can make your own metronome to im-
press family, friends, and the local Makerspace using a few electronic and electro-
mechanical components from the Ultimate Microcontroller Pack. The Metronome
is an awesome project to build because of the cool ticking sound and the homebrew
pendulum rod swinging motion. The electronic and electromechanical components
to build the Metronome project are shown in the Parts List. The assembled Metro-
nome is shown in Figure 25-1.

Parts List
• Arduino microcontroller

• MakerShield kit

• R1: 10KΩ potentiometer

• P1: piezo buzzer

• M1: DC servo motor

221

The Metronome 25

Figure 25-1. The Metronome

Let’s Build a Metronome
The Metronome is quite easy to build and it looks and sounds awesome when op-
erating. The DC servo motor provides the swinging motion to a homebrew pendu-
lum rod made from a piece of solid wire. The solid wire is threaded through the
bottom hole of a servo arm. To secure the wire to the motor while in motion, the
end of the wire passing through the bottom hole is wrapped around the servo arm.
To complete the mechanical assembly of the servo motor, the homebrew pendulum
rod (the solid wire) is stretched out, as shown in Figure 25-1. Next, the servo motor
is attached to the breadboard using a piece of solid wire to prevent it from moving
when the pendulum rod is swinging back and forth. The wire is wrapped around
the servo motor. The free wire ends on each side of the servo motor are inserted
into the breadboard (see Figure 25-2).

222 Make: Basic Arduino Projects

Figure 25-2. Servo motor attachment to breadboard: the free wire ends are inserted into the
breadboard

The 10KΩ potentiometer is used as a volume control to adjust the sound level of
the piezo buzzer. A cool trick used to make the “tick” sound, along with adjusting
the volume, is to place a small piece of tape over the piezo buzzer. Figure 25-3 shows
the location of the volume control, and the piezo buzzer with tape placed over it.
The Fritzing wiring diagram for building the Metronome is shown in Figure 25-4. As
with previous projects presented in this book, the MakerShield protoboard is a great
prototyping tool to use in building this cool mini Metronome device. Its bread-
boarding area allows the piezo buzzer, potentiometer, and servo motor components
to be wired to the Arduino microcontroller in a compact package.

Chapter 25: The Metronome 223

Figure 25-3. View of 10KΩ potentiometer (volume control) and piezo buzzer (with tape)

Tech Note
Make sure when placing the tape over the piezo buzzer that you do
not completely silence it!

224 Make: Basic Arduino Projects

Figure 25-4. The Metronome Fritzing wiring diagram

Upload the Metronome Sketch
Before uploading Example 25-1 to the Arduino, check and correct any wiring errors
on your breadboard using the Fritzing diagram shown in Figure 25-4. With the Met-
ronome electrical circuit wired on the breadboard, now it’s time to upload the Ar-
duino sketch. Here are the steps you’ll need to follow:

Chapter 25: The Metronome 225

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 25-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

The Arduino microcontroller is now programmed with the Metronome sketch. The
servo motor’s arm, with the homebrew pendulum rod, will begin to move back and
forth. Also, with each pass of the pendulum rod, a “tick” sound can be heard from
the Piezo buzzer. Figure 25-5 shows the completed Metronome in action.

Figure 25-5. The Metronome in action

Tech Note
A piece of solid wire was used to make a pendulum rod. Cardboard
and LEGO brick plates are good substitutes for a pendulum rod as
well.

226 Make: Basic Arduino Projects

Example 25-1. The Metronome sketch

/*
 Metronome sketch

 The servo motor arm will swing back and forth with a tick sound coming
 from a piezo buzzer.

 31 August 2013
 by Don Wilcher

*/

#include <Servo.h>

Servo myservo; // create servo object to control a servo
 // a maximum of eight servo objects can be created

int pos = 0; // variable to store the servo position
int PBuzzer = 7; // piezo buzzer pin number

void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
 pinMode(PBuzzer, OUTPUT);
}

void loop()
{
 for(pos = 0; pos <=45; pos += 1) // goes from 0 degrees to 45 degrees
 { // in steps of 1 degree
 if(pos==45){
 digitalWrite(PBuzzer, LOW);
 delay(15);
 digitalWrite(PBuzzer, HIGH);
 delay(15);
 digitalWrite(PBuzzer, LOW);
 delay(15);
 }
 myservo.write(pos); // go to position in variable 'pos'
 delay(15); // waits 15ms to reach the position
 }

 for(pos = 45; pos>=1; pos-=1) // goes from 45 degrees to 0 degrees
 {
 if (pos==1){
 digitalWrite(PBuzzer, LOW);
 delay(15);
 digitalWrite(PBuzzer, HIGH);
 delay(15);
 digitalWrite(PBuzzer, LOW);

Chapter 25: The Metronome 227

 delay(15);

 }
 myservo.write(pos); // go to position in variable 'pos'
 delay(15); // waits 15ms to reach the position
 }
}

The Metronome’s block diagram is shown in Figure 25-6. The block diagram shows
the circuit component blocks and the electrical signal flow (current) for the Metro-
nome. Also, the equivalent Fritzing electronic circuit schematic diagram of the Met-
ronome is shown in Figure 25-7. Electrical/electronic engineers and technicians use
them to design, build, and test cool interactive electronic products for games, test-
ing equipment, robots, and automobiles.

Tech Note
In order for the tick sound and swinging motion to be synchronized,
the delay(15) instruction is used throughout the Metronome
sketch.

Figure 25-6. The Metronome block diagram

Something to Think About
How can you change the timing of the Metronome?

228 Make: Basic Arduino Projects

Figure 25-7. The Metronome Fritzing circuit schematic diagram

Chapter 25: The Metronome 229

In the mid-1970s, a company named Tiger Electronics made a variety of handheld
electronic sporting games like baseball, basketball, and football. These portable
handheld games used LEDs, seven-segment LED displays, and speakers to provide
visual and audio effects for the units. The pushbuttons on these portable gaming
devices allowed total interaction between the player and the electronic handheld
unit. In other words, while they weren’t a Wii, these little electronic units were the
first really popular interactive sports games.

Imagine being able to make your own retro portable electronic game using com-
ponents from the Ultimate Microcontroller Pack. The Secret Word game is a cross
between Jeopardy! and Charades, in which players attempt to guess the message
programmed into the Arduino microcontroller within a certain amount of time. The
rules of the game are quite simple and will be discussed later in this final chapter of
the book. The assembled Secret Word Game is shown in Figure 26-1.

Parts List
• Arduino microcontroller

• Full-size breadboard

• R1: 330Ω resistor (orange, orange, brown stripes)

• R2: photocell (light sensor)

• R3: 1KΩ resistor (brown, black, red stripes)

• LCD1: 16x2 liquid crystal display (LCD), part number JHD 162A

• LED1: RGB (red, green, blue) LED

• S1: pushbutton switch

231

The Secret Word
Game 26

Figure 26-1. The Secret Word Game

Let’s Build a Secret Word Game
The Secret Word Game is a little tricky to build because of the wiring. Therefore,
you’ll have to use the full breadboard that comes with the Ultimate Microcontroller
Pack to adequately space the parts, as shown in Figure 26-1. Use the Fritzing wiring
diagram shown in Figure 26-2 to build the Secret Word Game on the full-size
breadboard.

Pin 1 of the LCD is the leftmost input at the base of the screen. Pins 2 to 16 continue
to the right. (Another way to identify pin 1 is by the small circle placed on the PCB
right next to pin 1.)

The photocell and RGB LED should be placed on the breadboard so that they are
easily visible and accessible; you need to clearly see the LED, and easily shine a light
on the photocell.

232 Make: Basic Arduino Projects

Figure 26-2. The Secret Word Game Fritzing wiring diagram

In past projects, we used the smaller sized MakerShield to keep the projects com-
pact. But with this many electronic components and wires in the Secret Word Game,
the full-size breadboard is the best choice for this project. And as always, be sure to
recheck your wiring against the Fritzing diagram, to catch any possible errors.

Tech Note
Before you upload the Arduino sketch to the Secret Word Game,
have a set of fresh eyes (like a friend or parent) look at the electrical
wiring on the full-size breadboard to catch any mistakes you might
have missed.

Chapter 26: The Secret Word Game 233

Upload the Secret Word Game Sketch
With the Secret Word Game wiring on the breadboard completed, now it’s time to
upload the Arduino sketch. Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 26-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

The Arduino microcontroller is now programmed with the Secret Word Game
sketch. The LCD will be blank and the RGB LED turned off. When you press the “Start
Game” pushbutton, the RGB LED will light up. The red, green, and blue LEDs will
sequence five times before turning off. Figure 26-3 shows the RGB LED sequencing
after the Start Game pushbutton has been pressed.

Figure 26-3. The Secret Word Game starting its timing sequence using the RGB LED

Once the RGB LED has turned off, shining a light on the photocell will reveal the
secret word on the LCD (Figure 26-4). Removing the light from the photocell will
erase the secret word on the LCD. New secret words can easily be uploaded to the
Arduino by changing one line of instruction in the sketch.

234 Make: Basic Arduino Projects

Figure 26-4. The secret word “Cat” being revealed on the LCD

Example 26-1. The Secret Word Game sketch

/*

 Demonstrates the use of a 16x2 LCD. A brief press of the Start Game
 pushbutton will turn on the RGB LED timing sequencing. The RGB LED turns
 off and the secret word can be revealed by a shining light on a photocell.

 25 August 2013
 by Don Wilcher

 */

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
int buttonPin = 6; // the number of the Start Game pushbutton pin
int RPin = 7; // select the pin for the red LED
int GPin = 8; // select the pin for the green LED
int BPin = 9; // select the pin for the blue LED

// variables will change:
int buttonStatus = 0; // variable for reading the Start Game
 // pushbutton status

void setup() {
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);

 // declare the LED pins as outputs:
 pinMode(RPin, OUTPUT);
 pinMode(GPin, OUTPUT);
 pinMode(BPin, OUTPUT);

Chapter 26: The Secret Word Game 235

 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);

}

void loop() {
 // read the state of the pushbutton value:
 buttonStatus = digitalRead(buttonPin);
 // check if the pushbutton is pressed
 // if it is, the buttonState is HIGH:
 if (buttonStatus == HIGH) {
 lcd.clear();
 delay(500);
 for (int i=0; i <= 5; i++){
 lcd.setCursor(8,0);
 lcd.print(i);

 // turn the red LED on:
 digitalWrite(BPin, HIGH);
 digitalWrite(RPin, LOW);

 // delay red LED for 1/2 second:
 delay(500);
 // turn the green LED on:
 digitalWrite(RPin, HIGH);
 digitalWrite(GPin, LOW);
 // delay green LED for 1/2 second:
 delay(500);
 // turn the blue LED on:
 digitalWrite(GPin, HIGH);
 digitalWrite(BPin, LOW);
 //delay blue LED for 1/2 second:
 delay(500);
 }
 } else {
 //turn red, green, and blue LEDs off:
 digitalWrite(RPin, HIGH);
 digitalWrite(GPin, HIGH);
 digitalWrite(BPin, HIGH);

 // print a Secret Word to the LCD:
 lcd.setCursor(0,0);
 lcd.print("Secret Word is:");
 // set the cursor to column 0, line 1
 // (note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor(0, 1);
 // print the number of seconds since reset:
 lcd.print("Cat"); // change secret word or phrase here!
 }
}

236 Make: Basic Arduino Projects

Tech Note
An LCD can also print mini messages in addition to words.

The Secret Word Game’s block diagram is shown in Figure 26-5. The Fritzing circuit
diagram is shown in Figure 26-6. Circuit schematic diagrams allow you to build
electronic devices quickly. Electrical/electronic engineers and technicians use them
to design, build, and test cool interactive electronic products for games, testing
equipment, robots, and automobiles.

Figure 26-5. The Secret Word Game block diagram

Rules for the Secret Word Game
The objective of the game is to guess the mystery word programmed into the Ar-
duino microcontroller within a certain amount of time. Three hints will be given to
the players by the game host, after which a pushbutton switch is pressed to start
the RGB LED timing sequence. The players will write their answers on a sheet of
paper. Once the RGB LED timing sequence is completed, the game host reveals the
secret word to the players by shining a flashlight on the photocell. The player who
has the winning word will shout out, “I’m a Winner,” or some other suitably cool
phrase! The game host starts a new game by changing the secret word using the
lcd.print() instruction of the Secret Word Game sketch. The new sketch is then
uploaded to the Arduino microcontroller for the next round of electronic gaming
fun!

Something to Think About
How can a mystery phrase be programmed for the game?

Chapter 26: The Secret Word Game 237

Figure 26-6. The Secret Word Game Fritzing circuit schematic diagram

238 Make: Basic Arduino Projects

Index

Symbols
!= (logical NOT function), 47
&& (logical AND function), 58
100 uF electrolytic capacitor, 105
|| (logical OR function), 66
Ω (omega symbol), for ohms, 32

A
Adjustable Twin LED Flasher, 35

sketch, 39
Amazing Pushbutton (with Processing),

143–156
Amazing Pushbutton in action, 153
building, 144
DisplayItems Processing sketch, 152–

153
downloading and installing Processing,

148
parts list, 143
pa_Pushbutton Processing sketch,

149–152
uploading the sketch, 146
visualizing digital data with Processing,

148
amplifiers

simple transistor amplifier, 103–110
building a Theremin, 104
circuit theory, 109
parts list, 103
uploading Theremin sketch, 106
using Serial Monitor for Theremin

sketch data, 108
AND logic gate, 51

(see also Arduino AND logic gate)
circuit symbol for, 54
reasons to use Arduino microcontroller

to build, 55
truth table, 54

animatronic controllers, 24
Arduino AND logic gate, 51–59

block diagram and circuit schematic di-
agram, 59

building, 55

circuit theory, 52
parts list, 51
uploading sketch for, 57

Arduino IDE
Serial Monitor, 14

Arduino NOT logic gate, 43–50
block diagram and circuit schematic di-

agram, 49
building, 45
circuit symbol for NOT logic gate, 45
circuit theory, 44
Fritzing wiring diagram, 45
parts list, 43
pressing pushbutton switch, 47
testing using truth table, 49
truth table, 45
uploading logic gate sketch, 46

Arduino Ohmmeter, 111–117
building, 112
circuit theory, 115
electrical safety tip, 117
parts list, 111
uploading the sketch, 113

Arduino OR logic gate, 61–69
block diagram and circuit schematic di-

agram, 68
building, 64
circuit theory, 62
parts list, 61
uploading scheme for, 66

B
binary number system, 172
block diagrams, 135

C
capacitors, polarized, 106
cathodes, 85
Circuit Lab, 2
circuit schematic diagrams (see electronic

circuit schematic diagrams)
circuit symbol

for AND logic gate, 54

239

for NOT logic gate, 45
classes, 166
color-coded wires, 195
common anode, 85
common anode pin, 83
common anode RGB LED, 81
Console Monitor, 176
counters, for loop, 92
crickets, 199

(see also Electronic Cricket)
response to temperature, 199

current, defined, 73

D
DC motors, 197
DMM (digital multimeter), 14

reading resistance of tilt control switch,
26

DPDT (double pole, double throw) switch,
214

E
electrical circuits, creating and testing with

online simulator, 2
Electrical Motor Tester (see Sweeping Ser-

vo)
electrical safety tips

for Arduino Ohmmeter, 117
for Metal Checker, 101

electrical signal flow of electronic products,
135

electronic circuit schematic diagrams, 15
Adjustable Twin LED Flasher, 35
AND logic gate controlling LED, 53
Arduino AND logic gate, 59
Arduino NOT logic gate, 49
Arduino Ohmmeter, 115
Arduino OR logic gate, 68
DPDT switch toggling two LEDs, 72
Electronic Cricket, 203
Electronic Pixel, 218
Interactive Twin LED Flasher, 38
LCD News Reader, 128
Logic Tester, 135
Logic Tester (with an LCD), 141
Magic Light Bulb, 91
Metal Checker, 100
Metronome, 228
OR logic gate controlling an LED, 62
Pocket Stage Light, 210
RGB Flasher, 81
Rocket Game, 181
Secret Word Game, 237
Servo Motor Tester, 197
Terrific Tilt Switch, 167

Theremin, 109
Tilt Sensing Servo Motor Controller, 26
Trick Switch, 6
Up-Down Sensor, 73

Electronic Cricket, 199–204
block diagram and circuit schematic di-

agram of Electronic Cricket, 203
building, 200
parts list, 199
uploading the sketch, 201

electronic metronomes, 221
Electronic Pixel, 213–219

block diagram and circuit schematic di-
agram, 218

building, 214
parts list, 213
uploading the sketch, 216–218

F
FALSE and TRUE states, 52
for loop, operating Magic Light Bulb, 92
FrankenBot toy, 38–41

Interactive Twin LED Flasher, 38
Fritzing circuit schematic diagrams (see

electronic circuit schematic diagrams)
Fritzing diagrams

Adjustable Twin LED Flasher, 35
Amazing Pushbutton, 144
AND logic gate, 53
Arduino AND logic gate, 55
Arduino Ohmmeter, 112
Arduino OR logic gate, 64
electronic circuit schematic diagram of

Tilt Sensing Servo Motor Controller,
26

electronic circuit schematic of Sunrise-
Sunset Light Switch, 15

Electronic Cricket, 200
Electronic Pixel, 214
Interactive Twin LED Flasher, 38
LCD News Reader, 122
Logic Tester with an LCD, 138
Logic Tester with an RGB LED, 132
Magic Light Bulb, 88
Metal Checker, 96
Metronome, 223
OR logic gate, 62
Pocket Stage Light, 206
RGB Flasher, 81
Rocket Launcher, 170
Secret Word Game, 232
Servo Motor Tester, 194
simple NOT Logic Gate wiring diagram,

44
Sunrise-Sunset Light Switch, 10

240 Index

Temperature Indicator, 184
Terrific Tilt Switch, 158
Theremin, 104
Tilt Sensing Servo Motor Controller, 21
Trick Switch, 3
Twin LED Flasher, 31
Up-Down Sensor, 73

G
gesture controls, 71

H
headers

adding 16-pin male header to LCD, 138
defined, 121
male header soldered to LCD PCB, 120

I
infinite resistance reading on DMM, 26
Interactive Twin LED Flasher, 38
inverters, 45

L
LCD News Reader, 119–129

building the LCD, 120
circuit theory, 128
parts list, 119
sketch for, 122–128
uploading the sketch, 122

LCDs, 119
in Secret Word Game, 232
logic tester with LCD, 137–142

LDRs (light-dependent resistors), 14
(see also photocells)

LEDs
in Arduino OR logic gate, 64
in parallel, 29–41

Adjustable Twin LED Flasher, 35
circuit theory, 31
Interactive Twin LED Flasher, 38
twin LED flasher, 31

multicolor (see Multicolor RGB Flasher)
replacing incandescent light bulb, 66
RGB, 79

(see also RGB LEDs)
staying on after switched off, 1
taking pin LOW to light it, 85

light-dependent resistors (LDRs), 14
(see also photocells)

liquid crystal displays (see LCDs; LCD News
Reader)

logic gates, 43
(see also Arduino AND logic gate; Ardu-

ino NOT logic gate; Arduino OR log-
ic gate)

logic operators, 55
logic probe, 141
Logic Tester (with an LCD), 137–142

building, 138
circuit theory, 141
parts list, 137
uploading the sketch, 139

Logic Tester (with an RGB LED), 131–136
building, 132
circuit theory, 135
parts list, 131
uploading the sketch, 133

M
Magic Light Bulb, 87–92

block diagram and circuit schematic di-
agram, 91

building, 88
parts list, 87
running through tricolor pattern, 89
uploading the sketch, 89

MakerShield, 29
Adjustable Twin LED Flasher, 35
Arduino AND logic gate, 55
directions for building, 33
Interactive Twin LED Flasher, 38
Magic Light Bulb built on, 88
Metal Checker built on, 96
NOT logic gate device, 46
RGB Flasher built on, 83
Theremin built on, 104
Twin LED Flasher, building on, 31
up-down sensor built on, 75

Makezine/Arduino projects website, 46
Metal Checker, 95–101

building, 96
circuit theory, 100
electrical safety tip, 101
parts list, 95
reasons to use transistor and Arduino,

97
uploading sketch for, 98

Metronome, 221–228
block diagram and circuit schematic di-

agram, 228
building, 222
parts list, 221
uploading the sketch, 225–228

microcontrollers, Arduino, using to build
logic gates, 55

Microsoft, Kinect, 206
Multicolor RGB Flasher, 79–86

circuit theory, 80
parts list and block diagram, 79
RGB Flasher sketch, 83

Index 241

RGB Flasher, building, 81

N
Negative Temperature Coefficient (NTC)

Sensor, 188–191
NOT logic gate, 43

(see also Arduino NOT logic gate)
circuit symbol for, 45
truth table, 45, 49

NPN transistors, 100

O
ohmmeters, 111

(see also Arduino Ohmmeter)
ohms and omega symbol (Ω), 32
ON-OFF indicators for Trick Switch, 4
Opposite Switch (see Arduino NOT logic

gate)
OR logic gate, 61

(see also Arduino OR logic gate)
circuit schematic diagram, 62
Fritzing wiring diagram, 62
truth tables, 63

orientation detection sensor circuit, 27
oscillators, 104

P
parallel circuits, 62
parts lists

Amazing Pushbutton (with Processing),
143

Arduino AND logic gate, 51
Arduino NOT logic gate, 43
Arduino Ohmmeter, 111
Electronic Cricket, 199
Electronic Pixel, 213
LCD News Reader, 119
Logic Tester with an LCD, 137
Logic Tester with an RGB LED, 131
Magic Light Bulb, 87
Metal Checker, 95
Metronome, 221
Multicolor RGB Flasher, 79
OR logic gate, 61
Pocket Stage Light, 205
Rocket Launcher, 169
Secret Word Game, 231
simple transistor amplifier, 103
Sunrise-Sunset Light Switch, 9
Sweeping Servo Motor Tester, 193
Temperature Indicator, 183
Terrific Tilt Switch (with Processing),

157
Tilt Flasher, 71
Tilt Sensing Servo Motor Controller, 19

Trick Switch, 1
PCBs (printed circuit boards), 122
photocells, 10

defined, 12
in Arduino AND logic gate, 55
in Interactive Twin LED Flasher, 38
in OR logic gate, 64
picture of, 13
sensor data scrolling on Serial Monitor,

108
physical computing, 24, 206
piezo buzzer

in Metal Checker, 97
troubleshooting, 100

in Metronome, 223
pitch range, Electronic Cricket, 203
pixels, 213

(see also Electronic Pixel)
PNP transistors, 100
Pocket Stage Light, 205–211

block diagram and circuit schematic di-
agram, 210

building, 206
parts list, 205
uploading the sketch, 208–210

polarized capacitors, 106
potentiometers, 13

adjusting sound level of buzzer in Met-
ronome, 223

in LCD News Reader, 120, 128
in logic tester with an LCD, 138
operating mini speaker, 203

printed circuit boards (PCBs), 122
Processing, 143

additional information on, 154
DisplayItems sketch, 152–153, 165, 179
download site for version 2.0, 171
downloading and installing, 148
NTC Sensor sketch, 188
pa_Pushbutton Processing sketch,

149–152
pa_Tilt sketch, 162–165
Rocket Game sketch, 174–179
visualizing digital data with, 148, 162

puppets, electromechanical, 24
Pushbutton Multicolor Flasher (see Magic

Light Bulb)
pushbutton switches in parallel (see Ardui-

no OR logic gate)
pushbutton switches in series (see Arduino

AND logic gate)

242 Index

R
resistance

measuring for electronic components,
111

mesuring with Arduino Ohmmeter, 113
reading for tilt control switch, 26
relationship with voltage, 115

resistor-capacitor timing basics
Sunrise-Sunset Light Switch, 9–16
Trick Switch, 1–6

resistors, 111
connected in series, resistance reading

from, 115
in logic tester with an LCD, 139

retro portable electronic games, 231
(see also Secret Word Game)

RGB Flasher, 79
(see also Multicolor RGB Flasher)
block diagram, 79
building, 81
sketch for, 83

RGB LEDs, 79
common anode, 81
creating white light with, 207
in Electronic Pixel, 214
in Pocket Stage Light, 206
logic tester with, 131–136

pinout of RGB LED, 132
operation with mini pushbutton switch

in Magic Light Bulb, 89
SPST switches controlling, 80
taking pin LOW to light it, 85
typical, with pinout names, 80

Rocket Launching Game (with Processing),
169–181
block diagram and circuit schematic di-

agram, 181
building a Rocket Game, 170
DisplayItems Processing Sketch, 179
MultiDigital4 sketch, 172–174
Rocket Game Processing sketch, 174–

179
Rocket Launcher parts list, 169
uploading MultiDigital4 sketch, 171

S
Secret Word Game, 231–237

block diagram and circuit schematic di-
agram, 237

building, 232
parts list, 231
rules for, 237
uploading the sketch, 234–237

sensors, 19

serial communications (see Electronic Pix-
el)

Serial Monitor, 210
using to debug code, 108

serial monitors
output for tilt control switch informa-

tion, 24
Sunrise-Sunset detector with, 14

displaying Sunset and Sunrise mes-
sages, 15

series circuit, 53
servo motors, 197

build process for Tilt Sensing Servo Mo-
tor Controller, 20

in Metronome, 222
testing limits of, 193
tilt sensing servo motor controller, 19

sketches (code)
Adjustable Twin LED Flasher, 35, 39
Amazing Pushbutton sketch, 146
Arduino AND Logic Gate, 57
Arduino NOT Logic Gate, 46
Arduino Ohmmeter sketch, 113
Arduino OR logic gate, 66
Blink sketch for Twin LED Flasher, 31
DisplayItems Processing sketch, 152–

153, 165, 179
Electronic Cricket sketch, 202
Electronic Pixel, 216
LCD News Reader, 122–128
Logic Tester (with an LCD), 140
Logic Tester sketch, 133
Magic Light Bulb running through tri-

color pattern, 89
Metal Checker sketch, 98
Metronome sketch, 226
MultiDigital4 sketch, 172–174
NTC Sensor Processing sketch, 188
pa_Pushbutton Processing sketch,

149–152
pa_Tilt Processing sketch, 162–165
Pocket Stage Light sketch, 208
Processing sketch listings for Arduino

projects, 162
Pushbutton, 3
Pushbutton with LED indicators

changes, 5
RGB Flasher, 83
Rocket Game Processing sketch, 176–

179
Secret Word Game, 234–237
Sunrise Sunset Detector with Serial

Monitor, 14
Sunrise-Sunset Light Switch, 11
Sweeping sketch, 196
Temperature Indicator sketch, 186

Index 243

Terrific Tilt Switch, 160
Theremin sketch, 106
Tilt Control Switch, 23
Tilt Control Switch with Serial Monitor,

24
Up-Down Sensor built on MakerShield,

75
smartphone touch screens, 206
SPDT (single pole, double throw) switch,

214
speakers

mini 8Ω speaker for Theremin, 104, 106
potentiometer operating mini speaker,

203
SPST (single pole, single throw) switches,

80
stage lighting, 205

(see also Pocket Stage Light)
Sunrise-Sunset Light Switch, 9–16

block diagram of electronic compo-
nents and electrical signal flow, 15

circuit schematic diagram, 15
detector with serial monitor, 14
Fritzing Wiring Diagram, 10
parts list, 9
RC timing circuit with photocell, 12
serial monitor displaying messages, 15

Sweeping Servo, 193–198
block diagram and circuit schematic di-

agram, 197
building a servo motor tester, 194
parts list, 193
uploading Sweeping sketch, 195

T
temperatore sensing (see Electronic Crick-

et; Pocket Stage Light)
Temperature Indicator (with Processing),

183–191
block diagram and electronic circuit

schematic diagram, 191
building a Temperature Indicator, 184
Negative Temperature Coefficient

(NTC) Sensor with Processing, 188–
191

parts list, 183
Temperature Indicator sketch, 186
uploading Temperature Indicator

sketch, 185
Terrific Tilt Switch (with Processing), 157–

167
block diagram and circuit schematic di-

agram, 167
building, 158
DisplayItems Processing sketch, 165

parts list, 157
pa_Tilt Processing sketch, 162–165
uploading Terrific Tilt Switch sketch,

159
visualizing digital data with Processing,

162
Theremin

block diagram and circuit schematic di-
agram, 109

building, 104
for simple transistor amplifier, 103
uploading sketch to the Arduino, 106
using Serial Monitor to display data

from sketch, 108
thermistors

defined, 183
experimenting with 10KΩ thermistor

and RGB LEDs, 210
in electronic cricket, 199
in Pocket Stage Light, 206
in Temperature Indicator, 186

tick, synchronizing with swinging motion
in Metronome, 228

Tiger Electronics, 231
tilt control switch, 72
tilt control switch, typical, 27
Tilt Flasher, 71–76

circuit theory, 72
parts list, 71
testing, 76
up-down sensor, 73
Up-Down Sensor block diagram, 71
uploading sketch for Up-Down Sensor

built on MakerShield, 75
Tilt Sensing Servo Motor Controller, 19–28

animatronic controller using, 24
block diagram, 26
building process, steps in, 20
circuit schematic diagram, 26
circuit theory, 27
observing tilt control switch behavior,

26
parts lists, 19
Tilt Control Switch sketch, 23
tilt control switch with Serial Monitor,

24
uploading tilt sensor sketch, 23

tilt sensor, 72
transistors

2N3904 NPN transistor pinout, 97
defined, 100
in pushbutton switch for logic tester

with LCD, 139
reasons for use in Metal Checker, 97
simple transistor amplifier, 103–110

244 Index

Trick Switch, 1–6
circuit schematic diagram, 6
parts list, 1
Pushbutton sketch, 3
steps in building process, 2
Trick Switch block diagram, 6
Trick Switch with ON-OFF indicators, 4

Pushbutton sketch with LED indica-
tors changes, 5

troubleshooting tips
AND logic gate, 59
Arduino OR logic gate, 69
Magic Light Bulb, 92
Metal Checker, 100
mini 8Ω speaker for Theremin, 107
Multicolor RGB Flasher, 85
NOT logic gate, 49
Sunrise-Sunset Light Switch, 14
Tilt Sensing Servo Motor Controller, 23
Trick Switch device, 3
Twin LED Flasher, 41
Up-Down Sensor, 76

TRUE and FALSE states, 52
TRUE output for OR logic gate, 62

truth tables
for AND logic gate, 54
for NOT logic gate, 45, 49
for OR logic gate, 63

TT (see truth tables)
Twin LED Flasher, 31

adjustable flash rate, 35
Blink sketch, 31
Fritzing diagram and circuit schematic

diagram, 31
interactive, 38

U
Ultimate Microcontroller Pack

MakerShield, 29
parts for Sunrise-Sunset Light Switch, 9
parts for Trick Switch, 1

up-down sensor, 71
(see also Tilt Flasher)
block diagram, 71
building, 73

V
variable resistors, 12
voltage divider, 115
voltage, relationship with resistance, 115

W
wires, color-coded, 195
wiring diagrams (see Fritzing diagrams)

Index 245

The cover and body font is Benton Sans, the heading font is Serifa, and the code font
is Bitstreams Vera Sans Mono.

About the Author
Don Wilcher is a passionate teacher of electronics technology and an electrical
engineer with 26 years of experience. He’s worked on industrial robotic systems,
automotive electronic modules and systems, and embedded wireless controls for
small consumer appliances. While at Chrysler Corporation, Don developed a week-
end enrichment pre-engineering program for inner-city kids. He is an Electronics
and Robotics Technologist developing twenty-first century educational products
for Makers and educators.

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. The Trick Switch
	Parts List
	Let’s Build a Trick Switch
	Trick Switch with On/Off Indicators
	Something to Think About

	Chapter 2. Sunrise-Sunset Light Switch
	Parts List
	Let’s Build a Sunrise-Sunset Light Switch
	Circuit Theory
	Sunrise-Sunset Detector with Serial Monitor
	Something to Think About

	Chapter 3. Tilt Sensing Servo Motor Controller
	Parts List
	Let’s Build a Tilt Sensing Servo Motor Controller
	Upload the Tilt Sensor Sketch
	A Simple Animatronic Controller Using the Serial Monitor
	Circuit Theory
	Something to Think About

	Chapter 4. Twin LEDs
	Parts List
	Circuit Theory
	Twin LED Flasher
	Build the Adjustable Twin LED Flasher
	It’s Alive! Build a FrankenBot Toy
	Something to Think About

	Chapter 5. The Opposite Switch
	Parts List
	Circuit Theory
	The Opposite Switch (aka the NOT Logic Gate)
	Build an Arduino NOT Logic Gate
	Upload the Arduino NOT Logic Gate Sketch
	Something to Think About

	Chapter 6. The AND Logic Gate
	Parts List
	Circuit Theory
	The Arduino AND Logic Gate
	Upload the Arduino AND Logic Gate Sketch
	Something to Think About

	Chapter 7. The OR Logic Gate
	Parts List
	Circuit Theory
	The Arduino OR Logic Gate
	Upload the Arduino OR Logic Gate Sketch
	Something to Think About

	Chapter 8. Tilt Flasher
	Parts List
	Circuit Theory
	The Up-Down Sensor
	Something to Think About

	Chapter 9. Multicolor RGB Flasher
	Parts List
	Circuit Theory
	The RGB Flasher
	Something to Think About

	Chapter 10. The Magic Light Bulb
	Parts List
	Let’s Build a Magic Light Bulb
	Upload the Magic Light Bulb Sketch
	Circuit Theory
	Something to Think About

	Chapter 11. Metal Checker: The Electronic Switch
	Parts List
	Let’s Build a Metal Checker
	Upload the Metal Checker Sketch
	Circuit Theory
	Something to Think About

	Chapter 12. The Theremin
	Parts List
	Let’s Build a Theremin
	Upload the Theremin Sketch
	Circuit Theory
	Something to Think About

	Chapter 13. An Arduino Ohmmeter
	Parts List
	Let’s Build an Arduino Ohmmeter
	Upload the Arduino Ohmmeter Sketch
	Circuit Theory
	Something to Think About

	Chapter 14. The LCD News Reader
	Parts List
	Let’s Build the LCD
	Upload the LCD News Reader Sketch
	Circuit Theory
	Something to Think About

	Chapter 15. A Logic Tester (with an RGB LED)
	Parts List
	Let’s Build a Logic Tester
	Upload the Logic Tester Sketch
	Circuit Theory
	Something to Think About

	Chapter 16. A Logic Tester (with an LCD)
	Parts List
	Let’s Build a Logic Tester
	Upload the Logic Tester Sketch
	Circuit Theory
	Something to Think About

	Chapter 17. The Amazing Pushbutton (with Processing)
	Parts List
	Let’s Build an Amazing Pushbutton
	Upload the Amazing Pushbutton Sketch
	Download and Install Processing Notes
	Let’s Visualize Digital Data with Processing
	Troubleshooting Tips for Processing
	Something to Think About

	Chapter 18. The Terrific Tilt Switch (with Processing)
	Parts List
	Let’s Build a Terrific Tilt Switch
	Upload the Terrific Tilt Switch Sketch
	Let’s Visualize Digital Data with Processing
	Something to Think About

	Chapter 19. The Rocket Launching Game (with Processing)
	Parts List
	Let’s Build a Rocket Game
	Upload the MultiDigital4 Sketch
	The Rocket Launcher with Processing
	Something to Think About

	Chapter 20. Temperature Indicator (with Processing)
	Parts List
	Let’s Build a Temperature Indicator
	Upload the Temperature Indicator Sketch
	The Negative Temperature Coefficient (NTC) Sensor with Processing
	Something to Think About

	Chapter 21. Sweeping Servo
	Parts List
	Let’s Build a Servo Motor Tester
	Upload the Sweeping Sketch
	Something to Think About

	Chapter 22. Electronic Cricket
	Parts List
	Let’s Build an Electronic Cricket
	Upload the Electronic Cricket Sketch
	Something to Think About

	Chapter 23. A Pocket Stage Light
	Parts List
	Let’s Build a Pocket Stage Light
	Upload the Pocket Stage Light Sketch
	Something to Think About

	Chapter 24. Electronic Pixel
	Parts List
	Let’s Build an Electronic Pixel
	Upload the Electronic Pixel Sketch
	Something to Think About

	Chapter 25. The Metronome
	Parts List
	Let’s Build a Metronome
	Upload the Metronome Sketch
	Something to Think About

	Chapter 26. The Secret Word Game
	Parts List
	Let’s Build a Secret Word Game
	Upload the Secret Word Game Sketch
	Rules for the Secret Word Game
	Something to Think About

	Index
	About the Author

